Cверхтвердый материал, который устойчив к радиоактивности

Что мы знаем о радиоактивных строительных материалах?

Cверхтвердый материал, который устойчив к радиоактивности

Мы все немало времени проводим внутри помещений – отдыхаем и работаем дома, трудимся в офисе или на производстве, расслабляемся в культурных заведениях.

Наше самочувствие и здоровье во многом зависят от того, насколько безопасен внутренний микроклимат помещения. В частности,  не использовались ли при возведении и ремонте здания радиоактивные строительные материалы.

Иногда это влияет и на продолжительность жизни, а это уже серьезно.

Что такое естественная радиоактивность материалов

Естественная радиация в природе существовала всегда. Один из ее источников – излучение земной коры. В ее толще залегают породы, из которых производят многочисленные строительные материалы. Многие из них до сих пор хранят следы радиоактивного прошлого нашей планеты.

К наиболее вредным строительным материалам причисляют:

  • гранит
  • кварцевый диорит
  • графит
  • туф
  • пемзу

Все они выделяют достаточно большое количество радона, поэтому для внутренней отделки перечисленные материалы лучше не использовать. Кирпич, бетон и дерево в этом смысле считаются сравнительно безопасными. Причем радиоактивность силикатного кирпича ниже, чем красного.

Относительно невысока удельная активность радионуклидов у карбонатных горных пород – мрамора и известняка. Средним уровнем естественной радиоактивности отличаются песок и гравий. Уровень радиации стекловолокна, фосфогипса обычно находится в допустимых пределах, но ради собственной безопасности стоит проверять и их.

Распространенные заблуждения о радиоактивности некоторых стройматериалов

Радиоактивность древесины выше, чем кирпича. Это заблуждение появилось после того, как люди начали измерять уровни радиационного фона внутри домов, построенных из этих материалов.

При этом самыми высокими оказались показатели, снятые в деревянных строениях.

На самом деле причина этого в том, что большинство деревянных домов – малоэтажные, то есть комнаты там расположены близко к земле, которая считается основным естественным источником радона.

Бетон – опасный радиоактивный материал. Мнение о высокой радиоактивности бетона распространилось после серии статей о повышенном радиационном фоне в панельных домах. На самом деле это не так.

Радиоактивность этого материала многократно ниже, чем у кирпича. К тому же, основная его часть обычно сконцентрирована в фундаменте дома.

Еще один аргумент: на крупных предприятиях по производству бетона безопасность продукции контролируют, а в качестве сырья используют щебень, добытый из сертифицированных мест.

Но тем не менее опасность, связанная с радиоактивностью наполнителей для изготовления этого строительного материала существует.

Поэтому, если вы замешиваете бетон самостоятельно, желательно проверить используемый для этого щебень и песок дозиметром. Это поможет убедиться в том, что данный материал можно использовать при строительстве жилых зданий.

Проверка требуется в основном гранитному щебню, так как гравийный материал в зону риска практически не входит.

В чем опасность радиоактивных строительных материалов

Радиоактивность некоторых используемых в строительстве материалов может нанести вред здоровью. При распаде радионуклидов, входящих в их состав (радия-226, калия-40, тория-232), выделяется радиоактивный газ радон. Его объемная активность в воздухе непроветриваемых помещений (подвалов, подземных станций метро), бывает в 10 и более раз выше, чем в открытой атмосфере.

Радон выделяется в воздух в два этапа. Сначала он проникает из материала в поры элементов строительного объекта. Затем постепенно распространяется через микрощели и трещины. При этом часть его распадается и попадает в воздух помещения. Больше всего радона скапливается на первых этажах зданий.

Опасность радиоактивных строительных материалов в том, что исходящее от них излучение может значительно ухудшать экологию помещения. Вследствие этого людей беспокоят:

  • головные боли,
  • аллергия,
  • плохое самочувствие.

Более того, поступая в легкие, радон распадается с выбросом альфа-частиц. Это может вызывать микроожоги тканей и их злокачественное перерождение.

Как проверить стройматериал на радиоактивность

Уровень природной радиоактивности строительных материалов ограничивается нормами радиационной безопасности (НРБ –99/2009).

Этот нормативный документ устанавливает три класса стройматериалов с разной величиной эффективной удельной активности природных радионуклидов (Аэфф).

Так, для строительства и ремонта жилых и общественных зданий допускается использовать материалы с Аэфф не более 370 Бк/кг.

К сожалению, сегодня никто не может гарантировать, что приобретаемые вами стройматериалы, а также обои, керамическая плитка, краска, штукатурка безопасны и ничего не излучают.

Если вы покупаете материалы по цене ниже средней и не можете сказать, что уверены в поставщике на все 100 %, проверьте их точным дозиметром, например RADEX RD1008.

Он оснащен двумя детекторами радиации, один из которых измеряет не только бета- и гамма-излучение, но фиксирует также альфа-лучи.

Дозиметр поможет вам аргументированно отклонить даже выгодное предложение о покупке вредных строительных материалов, которые иногда поступает от недобросовестных продавцов и поставщиков. Кроме того, с этим прибором вы легко проверите свою квартиру, офис, производственное помещение на предмет радиационной безопасности.

Победитель победита

Cверхтвердый материал, который устойчив к радиоактивности

Строители скважин и тоннелей во всем мире ищут полноценную и при этом экономичную замену для дорогостоящих резцов из алмазов и победита, применяемых на буровом оборудовании.

Фундаментальная наука, в свою очередь, десятилетиями бьется над поиском новых соединений и сплавов, не встречающихся в природе.

О том, как российские нефтяники помогли ученым сделать открытие, способное привести к промышленному получению нового сверхтвердого материала — пентаборида вольфрама, читайте в нашем материале, подготовленном совместно с компанией «Газпром нефть».

Ювелирный инструмент

Алмазы вот уже полтора века — лучшие друзья бурильщиков. В 1863 году инженер Родольфо Лоше впервые применил прообраз современной алмазной коронки во время строительства железнодорожного тоннеля в швейцарских Альпах.

Стальные буры, которыми пользовались тогда, выходили из строя уже через час работы. По легенде, в отчаянии наблюдая за бесполезными попытками пробить проход в горе, Лоше постукивал пальцами по оконному стеклу и заметил оставшиеся на нем следы от бриллиантового перстня.

Несмотря на сумасшедшую дороговизну (стоимость одного карата алмаза в середине XIX века была сравнима со стоимостью конного экипажа), Лоше смог уговорить инвестора приобрести 100 карат алмазов. Драгоценные камни крепились к буровой трубе вручную: в торце бура для каждого кристалла высверливалось отдельное гнездо, заполнявшееся специальным припоем.

Вскоре работа закипела. Алмазы крошились, выпадали из своих гнезд, некоторые из них наверняка после так и не вернулись на место, закатившись в карманы рабочих, но все равно драгоценные буры окупились: скорость проходки ускорилась в десятки раз — вместо часа их хватало уже на сутки.

Сегодня один алмазный резец стоит от 20 до 200 долларов.

Бурильные долота бывают разных конструкций: в среднем в них по 50 резцов, так что стоимость инструмента варьируется от полу- до нескольких миллионов рублей.

Срок эксплуатации сильно зависит от состава породы, которую «грызут» бурильщики: в условиях Восточной Сибири одно долото проходит 200-500 метров, а в Западной Сибири — 10 километров и более.

Тверже не бывает

Может ли что-нибудь заменить алмаз? Вопрос о том, существует ли более твердое вещество, крайне интересует не только бурильщиков, но и научное сообщество.

За десятилетия поисков были выпущены сотни публикаций, авторы которых утверждали, что наконец нашли или хотя бы поняли, где следует искать структуру, сравнимую с алмазом, а то и превосходящую его по твердости. Все эти утверждения впоследствии неизменно опровергались.

Пока ни одно известное вещество не может тягаться с алмазом по этому свойству. Но у него есть свои недостатки — в кислородной атмосфере алмаз начинает сгорать при температуре 1000 градусов Цельсия, а при более высоких температурах «растворяется» в железосодержащих породах.

Десять лет назад китайские ученые заявили, что, согласно их расчетам, в случае отсутствия примесей минерал лонсдейлит — это гексагональная полиморфная модификация алмаза, впервые синтезированная в 1966 году в лаборатории, — может быть на 58 процентов тверже алмаза. Однако эти теории так и не нашли подтверждения.

Поиск материала, который заменит алмазную пластину резца, продолжается. Российские ученые уже получили образцы новых сверхтвердых материалов, которые по своим характеристикам вплотную приближаются к такому веществу, как кубический нитрид бора. Это одно из наиболее близких к алмазу сверхтвердых соединений, применяемых в промышленности.

Кристаллические структуры сверхтвердых материалов

Oganov et al. Journal of Applied Physics, 2019

Победит всех победит?

Вплоть до конца XIX века в подземном бурении и горнодобывающей промышленности для создания бурового сверла использовали только инструментальную сталь, насыщенную углеродом. Следом пришла идея использовать для режущего инструмента вольфрам-углеродный сплав. Его впервые применили в 1920-х годах на заводах Круппа в Германии.

В СССР в 1929 году был запатентовано «каноничное» соотношение карбида вольфрама и кобальта в сплаве — 9 к 1. Сплав советские инженеры нарекли вполне в духе времени — победитом. Сегодня победитов уже десятки: в составе многих не только вольфрам и кобальт, но еще и никель, титан, тантал.

Победитовое сверло бурит бетон, может даже пробить металл в нем. Такие буры справляются с работой на твердых почвах и скалистых породах.

Десятки лет головки резцов для буровых установок во всем мире делают из победита (карбид вольфрама) с вкраплениями синтетических алмазов. Они вне конкуренции на рынке, другие материалы не смогли их вытеснить.

Даже более твердые материалы, например диборид титана, либо требуют высоких давлений при их синтезе, а значит обладают высокой себестоимостью, либо имеют гораздо более низкую трещиностойкость и менее практичны в использовании.

Между вольфрамом и бором

В 2015 году российские нефтяники и ученые из Сколтеха решили объединиться, чтобы вместе получить материал, способный победить победит.

«В какой-то момент мы задались вопросом, — вспоминает Артем Закиров, эксперт Научно-технического центра «Газпром нефти», — а нельзя ли использовать другой материал для буровых резцов, который будет более износостойким и не будет требовать при синтезе высоких давлений».

Ответ на этот вопрос искали между вольфрамом и бором. Известно, что они могут образовывать между собой много устойчивых кристаллических фаз различного состава: две фазы состава WB и еще три соединения WB2, W2B, WB4.

В ходе новых исследований кристаллографы обнаружили еще три устойчивые структуры, неизвестные ранее: триборид тетравольфрама (W4B3), пентаборид гексавольфрама (W6B5) и пентаборид вольфрама (WB5). Все три фазы оказались тугоплавкими и сверхтвердыми, а наиболее интересной из них ученые назвали пентаборид вольфрама WB5.

Согласно расчетам, твердость пентаборида находится на уровне 45 гигапаскалей. И его свойства должны сохраняться даже при очень высоких температурах — например, твердость нового материала при нагревании до 2000 градусов Цельсия падает только до 27 гигапаскалей. В это же время, к примеру, алмаз уже полыхал бы синим пламенем.

Прототипы резцов для бурового оборудования из новых спроектированных материалов первой испытала «Газпром нефть». Тестировали пентаборид вольфрама на граните. Проверка подтвердила, что образцы тверже победита и его аналогов. Уникальный материал оказался на 30 процентов прочнее и в 2 раза устойчивее к высоким температурам.

Сейчас «Газпром нефть» продолжает исследовать способы производства новых материалов и изделий на их основе на промышленном оборудовании. Специально для этого совместно с Российским научным фондом компания открыла в Сколтехе лабораторию компьютерного дизайна новых материалов.

Газпром нефть

Эволюция успеха

«Самый простой способ взаимодействия с бизнесом — когда тебя просят решить ту задачу, решение которой ты уже наполовину придумал, — рассказывает Артем Оганов, российский кристаллограф и профессор Сколтеха.

— Мы на протяжении долгого времени изучали множество систем, предсказывая стабильные химические соединения и рассчитывая их свойства. Это были интересные вещества, но с победитом по твердости они были не сравнимы.

Казалось, что победит действительно непобедим».

Оружие Оганова — это USPEX. Читайте это аббревиатуру как хотите, но расшифровывается она как Universal Structure Predictor: Evolutionary (X)Crystallography. Это машинный алгоритм предсказания кристаллических структур. Он предсказывает, какая у вещества с заданным химическим составом будет устойчивая структура в тех или иных условиях.

Наиболее устойчивая структура вещества обладает наименьшей энергией. В данном случае энергия характеризует электромагнитное взаимодействие ядер и электронов атомов, из которых состоит кристалл.

Искать структуры с наименьшей энергией простым перебором практически бесполезно: даже если система состоит из всего десятка атомов, вариантов их расположения друг относительно друга будет порядка 100 миллиардов.

USPEX генерирует случайным образом небольшое количество структур и рассчитывает их энергию.

А дальше начинается эволюция в прямом смысле этого слова: варианты с наибольшей энергией, то есть наименее устойчивые структуры, отбрасываются, а из наиболее устойчивых алгоритм генерирует производные структуры. Если их энергия оказывается ниже «материнских», но следующее «поколение» производится уже от них.

Понизить давление

Новые сверхтвердые материалы отправились в Институт физики высоких давлений имени Верещагина РАН для проверки результатов ученых Сколтеха.

«У нас был опыт работы с боридами, накопленный за предыдущие 30 лет, но области более высоких концентраций бора мы не исследовали, поскольку такие сплавы более хрупкие», — говорит Вадим Бражкин, директор ИФВД РАН.

В камере с максимальным давлением 15 тысяч атмосфер (примерно соответствует 15 килобар) в ИФВД синтезировали опытные образцы из пентаборида вольфрама в несколько миллиметров длиной.

Более крупные прототипы резцов не требуются, поскольку рабочие элементы коронок резцов не превышают 15 миллиметров.

По механическим показателям образцы, полученные при высоком давлении, выигрывают, однако проигрывают по себестоимости.

В ИФВД объясняют, что, по их расчетам, для внедрения в промышленных масштабах надо научиться синтезировать пентаборидовые коронки при давлениях менее 10 килобар. Над этим в институте сейчас активно работают. В случае успеха ученым предстоит найти подходящую площадку для производства, убедить сервисные компании в выгодах от внедрения нового материала и защитить патентные права.

«Мы хотели выстроить технологическую цепочку от фундаментальной науки до практического применения. В нашей стране этот институт трансфера и запросов бизнеса к фундаментальной науке не развит. На примере пентаборида вольфрама мы пытаемся его создать практически с нуля», — признают в «Газпром нефти».

«Карта сокровищ»

А пока в ИФВД пекли и испытывали пентаборид, теоретики продолжали свой поиск. И в новой публикации Оганов с коллегами из Сколтеха и МФТИ описали сочетание алгоритма USPEX с двумя новыми методами расчета твердости по Виккерсу и ударной вязкости (способности поглощать энергию без разрушения).

Исключив инертные газы, редкоземельные элементы и радиоактивные нуклиды, ученые проверили бинарные комбинации из 74 элементов периодической таблицы. Итогом их работы стала «карта сокровищ» сверхтвердых материалов, где обозначены как уже известные, так и новые вещества разной степени твердости и ударной вязкости.

На «карте» представлены как известные материалы: карбид вольфрам, корунд, так и перспективные. Одна из новых меток на этой «карте сокровищ» — как раз пентаборид вольфрама.

Кристаллографы также обнаружили сверхтвердые качества у гидрида марганца, материала, который ранее никогда не изучали как сверхтвердую фазу. Тем не менее, он оказался более твердым, чем стишовит, сверхтвердый оксид кремния, возникающий при ударах метеоритов.

Николай Козин

Радиологические характеристики строительных материалов

Cверхтвердый материал, который устойчив к радиоактивности
Слово “Radiation” в переводе с английского означает “излучение” и охватывает широкий круг физических явлений.

К сожалению, некоторые средства массовой информации и рекламные слоганы, пользуясь необразованностью граждан, формируют истерическую реакцию по всем вопросам, связанным с радиацией, создавая образ «незримого, коварного и смертельно опасного врага, подстерегающего на каждом шагу».

Мы рекомендуем прочитать эту статью людям, которые, хотя и озабочены опасностью радиации, однако имеют пока весьма смутное понятие об этой проблеме.

С введением ГОСТ 30108-94 «Материалы и изделия строительные.

Определение удельной эффективной активности естественных радионуклидов» производителями строительных материалов обязательно проводятся регулярные исследования образцов строительных материалов на удельную эффективную активность естественных радионуклидов: Радия-226, Тория-232 и Калия-40.

Критерием оценки является удельная эффективная активность радионуклидов (Аэфф.), по которой устанавливается принадлежность материала к 1, 2 или 3 классу и определяются возможные области его использования. Эти характеристики обычно указываются в гигиенических сертификатах на строительные материалы.

Таблица «Радиационно-гигиеническая оценка и требования к материалам по ГОСТ при их производстве»

МатериалУдельная эффективная активность естественных радионуклидов, АэффКласс безопасностиУстановленная область применения
щебень, гравий, песок, кирпичдо 370 Бк/кг1во вновь строящихся жилых и общественных зданиях
щебень, гравий, песоксвыше 370 до 740 Бк/кг2для дорожного строительства в пределах территории населенных пунктов и зон перспективной застройки, а также при возведении производственных зданий и сооружений
щебень, гравий, песоксвыше 740 до 1 350 Бк/кг3в дорожном строительстве вне населенных пунктов

В соответствии с рекомендациями Национальной комиссии по радиационной защите суммарная удельная активность естественных радиоактивных веществ в любых материалах, применяемых в строительстве жилых и общественных зданий, не должна превышать 370 Бк/кг.

Эффективная удельная радиоактивность — практически единственный контролируемый параметр при определении экологической безопасности керамических изделий, в том числе кирпича.

Величина этого параметра зависит от географического положения карьера, в котором добывалось исходное сырье.

В экологическом сертификате показатель удельной радиоактивности строительной продукции, как правило, указывается.

Согласно протоколу радиационного качества №112 от 25.05.2004, выданным Тюменским некоммерческим фондом сертификации, эффективная удельная активность естественных радионуклидов керамического кирпича, произведенного ЗАО «Винзилинским заводом керамических стеновых материалов» составляет 97,93 Бк/кг, что почти в 4(!) раза ниже допустимой нормы.

Основная задача радиационного контроля (измерений радиации или радиоактивности) состоит в определении соответствия радиационных параметров исследуемого объекта (мощность дозы в помещении, содержание радионуклидов в строительных материалах и т.д.) установленным нормам.

Для вдыхаемого воздуха, воды и продуктов питания нормируется содержание как техногенных, так и естественных радиоактивных веществ. В дополнение к НОРМАМ РАДИОАКТИВНОЙ БЕЗОПАСНОСТИ в этом случае используются “Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов (СанПиН 2.3.2.560-96)”.

Для стройматериалов нормируется содержание радиоактивных веществ из семейств урана и тория, а также калий-40 (в соответствии с НРБ-99).

Что может быть источником радиации?

По теории радиологии — источником радиации могут являться различные природные ресурсы, идущих на производство строительных материалов. В строительных материалах, из которых возведены как старые, так и современные дома (бетон, арматура, природный и искусственный камень, гранит и т.д.), могут находиться активные ионы.

Не менее опасным для человека может являться также газ — радон, концентрация которого высока в подвалах зданий. Радиоактивными могут оказаться и продукты питания, например, орехи и грибы.

Основной вклад в получение человеком радиации делает воздух, которым мы дышим — около 55% получаемой в год радиации мы получаем из-за присутствии в воздухе газа радон. Он также скапливается в помещениях, потому важным способом защиты от радона является частое проветривание домов и квартир. Также существуют допустимые нормы присутствия радона в помещении.

Космические излучения составляют около 8% от получаемого количества радиации. Ещё 11% составляют присутствующие в организме человека вещества. 14% радиации человек получает при проведении рентгеновских снимков. Оставшиеся несколько процентов излучения мы получаем благодаря бытовым приборам.

Как видно, полностью исключить радиацию из повседневной жизни человека невозможно. Но необходимо получать её в разумных, допустимых пределах. О нормах радиоактивности и следует иногда вспомнить.

Это полезно сделать при покупке квартиры, дома, земельного участка, при планировании строительных и отделочных работ, при выборе и приобретении строительных и отделочных материалов для квартиры или дома, а также материалов для благоустройства территории вокруг дома (грунт насыпных газонов, насыпные покрытия для теннисных кортов, тротуарная плитка и брусчатка и т.д.). Благо ассортимент радиационно-безопасных стройматериалов ныне чрезвычайно богат.

Как нефтяники помогли приблизить получение нового сверхтвердого материала

Cверхтвердый материал, который устойчив к радиоактивности

Строители скважин и тоннелей во всем мире ищут полноценную и при этом экономичную замену для дорогостоящих резцов из алмазов и победита, применяемых на буровом оборудовании.

Фундаментальная наука, в свою очередь, десятилетиями бьется над поиском новых соединений и сплавов, не встречающихся в природе.

О том, как российские нефтяники помогли ученым сделать открытие, способное привести к промышленному получению нового сверхтвердого материала — пентаборида вольфрама, читайте в нашем материале, подготовленном совместно с компанией «Газпром нефть»

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.