Экономика отработанного ядерного топлива

Отработавшее ядерное топливо в затяжной ядерной войне | Политика, экономика, общество (без банов)

Экономика отработанного ядерного топлива

В тонне ОЯТ содержится также около 960 кг урана. урана-235 в нем невелико, около 1,1%, но уран-238 можно пропустить через реактор-наработчик и получить все тот же плутоний, только теперь уже хорошего оружейного качества.

Наконец, ОЯТ, особенно только что извлеченное из реактора, может выступать в качестве радиологического оружия, причем оно заметно превосходит в этом качестве кобальт-60. Активность 1 кг ОЯТ достигает 26 тысяч кюри (у кобальта-60 — 17 тысяч кюри).

Тонна ОЯТ, только что извлеченного из реактора, дает уровень радиации до 1000 зивертов в час, то есть смертельная доза в 5 зивертов набегает всего за 20 секунд. Превосходно! Если противника посыпать мелким порошком ОЯТ, то ему можно нанести серьезные потери.

Все эти качества ОЯТ давно и хорошо известны, только они наталкивались на серьезные технические трудности, связанные с извлечением топлива из тепловыделяющей сборки.

Разобрать “трубку смерти”

Само по себе ядерное топливо — это порошок оксида урана, спрессованного или спеченного в таблетки, небольшие цилиндры с полым каналом внутри, которые помещаются внутрь тепловыделяющего элемента (ТВЭЛ), из которых собираются тепловыделяющие сборки, помещаемые в каналы реактора.

Вот как раз ТВЭЛ — это камень преткновения переработки отработанного ядерного топлива. Больше всего ТВЭЛ похож на очень длинный ружейный ствол, длиной почти 4 метра (3837 мм, если точно). Калибр у него почти ружейный: внутренний диаметр трубки составляет 7,72 мм. Внешний диаметр — 9,1 мм, а толщина стенки трубки 0,65 мм.

Трубка делается либо из нержавеющей стали, либо из циркониевого сплава.

Макет ТВС, на котором хорошо видна конструкция блока, тепловыделяющих элементов и размещение внутри них ядерного топлива

Внутрь трубки закладываются цилиндры из оксида урана, и закладываются плотно. В трубку вмещается от 0,9 до 1,5 кг урана. Закрытый ТВЭЛ надувается гелием под давлением в 25 атмосфер. В ходе кампании урановые цилиндры нагреваются и расширяются, так что в итоге они оказываются намертво заклиненными в этой длинной трубке ружейного калибра.

Всякий, кто выбивал шомполом застрявшую в стволе пулю, хорошо может себе представить трудность задачи. Только тут ствол почти 4 метра в длину, и заклиненных в нем урановых “пуль” больше двухсот. Радиация от него такова, что работать с только что вытащенным из реактора ТВЭЛ можно только дистанционно, с помощью манипуляторов или каких-то других приспособлений или автоматов.

Как же извлекали облученного топливо из реакторов-наработчиков? Там ситуация была очень проста. Трубки ТВЭЛ для реакторов-наработчиков делались из алюминия, который прекрасно растворяется в азотной кислоте, вместе с ураном и плутонием. Из раствора азотной кислоты извлекались нужные вещества и шли в дальнейшую переработку.

Но энергетические реакторы, рассчитанные на гораздо более высокую температуру, используют тугоплавкие и кислотостойкие материалы ТВЭЛ. Более того, разрезание столь тонкой и длинной трубки из нержавейки — это очень редкая задача; обычно все внимание инженеров сосредоточено на том, чтобы такую трубку прокатать. Трубка для ТВЭЛ — это настоящий технологический шедевр.

В общем, предлагались разные способы разрушения или разрезания трубки, но возобладал такой метод: сначала трубку рубят на прессе (можно рубить целиком тепловыделяющую сборку) на куски длиной около 4 см, а потом засыпают обрубки в емкость, где азотной кислотой растворяют уран. Полученный нитрат уранила уже не так трудно выделить из раствора.

И этот метод, при всей его простоте, имеет существенный недостаток. Урановые цилиндры в кусках ТВЭЛ растворяются медленно. Площадь контакта урана с кислотой на торцах обрубка весьма мала и это замедляет растворение. Невыгодные условия реакции.

Если же рассчитывать на ОЯТ как на военно-значимый материал для получения урана и плутония, а также в качестве средства радиологической войны, то надо научиться распиливать трубки быстро и сноровисто. Для получения средства радиологической войны химические способы не годятся: нам ведь надо сохранить весь букет радиоактивных изотопов.

Их не так много, продуктов деления, 3,5% (или 35 кг на тонну): цезий, стронций, технеций, но именно они создают высокую радиоактивность ОЯТ. Потому нужен механический способ извлечения урана со всем остальным содержимым из трубок.Поразмыслив, я пришел к следующему выводу. Толщина трубки 0,65 мм. Не так много. Ее можно срезать на токарном станке.

Толщина стенки примерно соответствует глубине резания многих токарных станков; при необходимости можно применить специальные решения с большой глубиной резания вязких сталей, вроде нержавейки, или использовать станок с двумя резцами. Автоматический токарный станок, который может сам захватить заготовку, зажать ее и обточить — это уже не редкость в наши дни, тем более, что срезание трубки не требует прецизионной точности. Достаточно лишь обтачивать торец трубки, превращая ее в стружку.

Фотография больше для примера того, насколько токарный станок легко справляется с обтачиванием цилиндрических заготовок

Урановые цилиндры, освобождаясь от стальной оболочки, будут выпадать в приемник под станком.

Иными словами, вполне возможно создать полностью автоматический комплекс, который будет рубить ТВС на части (длиной, наиболее удобной для обтачивания), складывать отрубки в накопитель станка, дальше станок срезает трубку, освобождая ее урановую начинку.

Если освоить разборку “трубок смерти”, то можно использовать отработанное ядерное топливо и как в качестве полуфабриката для выделения оружейных изотопов и производства реакторного топлива, так и в качестве радиологического оружия.

Черная смертоносная пыль

Радиологическое оружие, на мой взгляд, в наибольшей степени применимо в затяжной ядерной войне и, главным образом, для нанесения ущерба военно-экономическому потенциалу противника.Под затяжной ядерной войной я поднимаю такую войну, в которой ядерное оружие применяется на всех стадиях продолжительного вооруженного конфликта.

Не думаю, что крупномасштабный конфликт, который дошел или даже начался с обмена массированными ракетно-ядерными ударами, на них же и закончится. Во-первых, даже после значительного ущерба будут еще оставаться возможности для ведения боевых действий (запасы вооружений и боеприпасов позволяют вести достаточного интенсивные боевые действия еще 3-4 месяца без их пополнения производством).

Во-вторых, даже после израсходования ядерных боеприпасов, стоящих на боевом дежурстве, у крупных ядерных стран еще останутся на складах которые, скорее всего, не пострадают, весьма большое количество различных боеголовок, ядерных зарядов, ядерных взрывных устройств. Их можно пустить в ход, и их значимость для ведения боевых действий становится очень велика.

Их целесообразно поберечь, и использовать либо для коренного перелома хода важных операций, либо в самой критической ситуации. Это уже будет не залповое применение, а растянутое по времени, то есть ядерная война приобретает характер затяжной.

В-третьих, в военно-экономических вопросах крупномасштабной войны, в которой конвенционное вооружение используется наряду с ядерным, вопросы производства оружейных изотопов и новых зарядов, пополнение арсеналов ядерного оружия, явно будут в числе наиболее важных, приоритетных задач.

В том числе, конечно, скорейшее создание реакторов-наработчиков, радиохимических и радиометаллургических производств, предприятий по изготовлению комплектующих и сборке ядерных боеприпасов.Вот как раз в условиях масштабного и затянувшегося вооруженного конфликта важно не дать противнику воспользоваться имеющимся у него экономическим потенциалом.

Такие объекты можно уничтожить, на что потребуется либо ядерный боеприпас приличной мощности, либо большой расход конвенционных авиабомб или ракет. Скажем, во время Второй мировой войны для гарантированного выведения крупного завода из строя требовалось сбросить на него от 20 до 50 тысяч тонн авиабомб в несколько приемов.

Первая атака останавливала производство и повреждала оборудование, а последующие срывали восстановительные работы и усугубляли повреждения. Скажем, завод по производству синтетического горючего Leuna Werke с мая по октябрь 1944 года атаковали шесть раз, прежде чем производство упало до 15% от нормальной производительности.Иными словами, само по себе разрушение еще ничего не гарантирует.

Разрушенный завод поддается восстановлению, а с сильно разрушенного объекта можно вывести остатки оборудования, пригодного для создания нового производства в другом месте. Хорошо было бы выработать метод, который вообще не позволял бы противнику ни использовать, ни восстановить, ни разобрать на запчасти важный военно-экономический объект.

Думается, что радиологическое оружие для этого подходит.Стоит напомнить, что во время аварии на Чернобыльской АЭС, в которой все внимание обычно было приковано к 4-му энергоблоку, остальные три энергоблока тоже были остановлены 26 апреля 1986 года.

Ничего удивительного, они оказались загрязнены и уровень радиации на 3-м энергоблоке, расположенном рядом со взорвавшимся, в тот день составлял 5,6 рентген/час и полусмертельная доза в 350 рентген набегала за 2,6 суток или всего за семь рабочих смен. Понятно, что работать там было опасно.

Решение о перезапуске реакторов было принято 27 мая 1986 года, и после интенсивной дезактивации 1-й и 2-й энергоблоки запустили в октябре 1986 года, а третий энергоблок — в декабре 1987 года. АЭС мощностью в 4000 МВт оказалась полностью выведенной из строя на пять месяцев просто потому, что неповрежденные энергоблоки подверглись радиоактивному загрязнению.

Так что, если посыпать вражеский военно-хозяйственный объект: электростанцию, военный завод, порт и так далее, порошком из отработанного ядерного топливо, со всем букетом сильно фонящих изотопов, то противник лишится возможности его использовать.

Ему придется потратить многие месяцы за дезактивацию, вводить быструю ротацию работников, строить радиоубежища, нести санитарные потери от переоблучения персонала; выработка же прекратится совсем или очень значительно снизится.

Способ доставки и загрязнения тоже довольно простой: мелко размолотый порошок оксида урана — черная смертоносная пыль — снаряжается в разрывные кассеты, которые в свою очередь снаряжаются в боеголовку баллистической ракеты. В нее свободно может войти 400-500 кг радиоактивного порошка.

Над целью кассеты выбрасываются из боеголовки, кассеты разрушаются подрывными зарядами, и мелкая высокорадиоактивная пыль покрывает цель. В зависимости от высоты срабатывания боеголовки ракеты, можно получить сильное загрязнение сравнительно небольшой площади, или же получить обширный и протяженный радиоактивный след с меньшим уровнем радиоактивного загрязнения. Хотя, как сказать, Припять выселили, поскольку уровень радиации составил 0,5 рентген/час, то есть полусмертельная доза набегала за 28 дней и жить постоянно в этом городе стало опасно.На мой взгляд, радиологическое оружие напрасно назвали оружием массового поражения. Оно может кого-то поразить только в очень благоприятных условиях. Это, скорее, средство заграждения, создающее препятствия для доступа на зараженную территорию. Топливо из реактора, которое может давать активность в 15-20 тысяч рентген/час, как указано в “Чернобыльских тетрадях”, создаст весьма эффективное препятствие для использования зараженного объекта. Попытки игнорировать радиацию приведут к высоким безвозвратным и санитарным потерям. С помощью этого средства заграждения можно лишить противника важнейших экономических объектов, ключевых узлов транспортной инфраструктуры, а также важнейших сельскохозяйственных угодий.

В зависимости от ветра может получиться вполне приличное пятно радиоактивного загрязнения

Спутниковый снимок с обозначением важнейших объектов: ЧАЭС и взорвавшегося энергоблока, города Припять, железнодорожной станции Янов, порта. В отличие от авиабомб, радиоактивное загрязнение лишает возможности пользоваться всей инфраструктурой военно-значимого объекта

Такое радиологическое оружие гораздо более простое и дешевое, чем ядерный заряд, поскольку гораздо проще его по конструкции. Правда, в силу очень высокой радиоактивности потребуется специальное автоматическое оборудование для размола извлеченного из ТВЭЛ оксида урана, снаряжения его в кассеты и в боеголовку ракеты.

Сама боеголовка должна храниться в специальном защитном контейнере и устанавливаться на ракету специальным автоматическим устройством непосредственно перед пуском. Иначе расчет получит смертельную дозу облучения еще до пуска.

Лучше всего ракеты для доставки радиологических боеголовок базировать в шахтах, поскольку там проще решить проблему с безопасным хранением высокорадиоактивной боеголовки до пуска.

Росатом к 2020 году сможет переработать любое ядерное топливо

Экономика отработанного ядерного топлива

2017-06-21T13:05+0300

2020-03-03T04:57+0300

https://ria.ru/20170621/1496987193.html

Росатом к 2020 году сможет переработать любое ядерное топливо

https://cdn25.img.ria.ru/images/149357/61/1493576120_0:314:3083:2048_1036x0_80_0_0_86f75995257f8dd0c5bc9a0e12b9009b.jpg

РИА Новости

https://cdn22.img.ria.ru/i/export/ria/logo.png

РИА Новости

https://cdn22.img.ria.ru/i/export/ria/logo.png

МОСКВА, 21 июн — РИА Новости.

Предприятие госкорпорации “Росатом” “Производственное объединение “Маяк” (Озерск, Челябинская область) планирует к 2020 году стать первым в мире предприятием, овладевшим технологиями переработки отработавшего ядерного топлива (ОЯТ) любого типа, сообщил РИА Новости на форуме “Атомэкспо-2017” заместитель генерального директора “Маяка” по стратегическому развитию Дмитрий Колупаев.

Организатор “Атомэкспо-2017” — госкорпорация “Росатом”. Генеральный информационный партнер форума — агентство РИА Новости (флагманский ресурс МИА “Россия сегодня”).

Переработка отработавшего ядерного топлива — высокотехнологичный процесс, направленный на минимизирование радиационной опасности ОЯТ, безопасную утилизацию неиспользуемых компонентов, выделение полезных веществ и обеспечение их дальнейшего использования. Промышленная переработка ОЯТ ведется в трех странах — в России, Франции, Великобритании.

“Маяк” выполняет проект по расширению номенклатуры перерабатываемого у себя ОЯТ. В частности, освоена технология переработки ОЯТ российских реакторов ВВЭР-1000. Этот проект даст возможность предприятию в ближайшие полтора-два года стать единственным в мире предприятием, которое может перерабатывать любые виды отработавшего ядерного топлива, в том числе ОЯТ зарубежного дизайна, а также дефектных топливных сборок. Это даст Росатому дополнительные конкурентные преимущества на мировых рынках.

“Маяк” — первый промышленный объект отечественной атомной отрасли. Он был создан для наработки оружейного плутония, необходимого для создания советского атомного оружия. Приоритетные направления работы “Маяка” в настоящее время — переработка отработавшего ядерного топлива, производство изотопов и средств радиационного контроля, выполнение государственного оборонного заказа.

“Всеядный” комплекс

“За последние годы “Маяк” значительно продвинулся вперед в плане переработки отработавшего ядерного топлива исследовательских реакторов.

Освоена переработка нескольких топливных композиций, но ключевым, пожалуй, станет проект по переработке уран-циркониевого топлива. Производственные мощности для этого должны быть готовы в нынешнем году”, — сказал Колупаев.

Он пояснил, что это будет опытная установка, которая позволит сначала отработать необходимые технологии, а затем и фактически станет производственной установкой.

“Такого топлива относительно немного, и это, прежде всего, отработавшее топливо наших атомных ледоколов. Оно находится в сухом контейнерном хранилище на Севере, но сколь угодно долго оно эксплуатироваться не может. Поэтому задача переработки этого вида ОЯТ должна быть решена, и для этого не требуются большие производственные мощности”, — отметил собеседник агентства.

Опытная переработка уран-циркониевого ОЯТ должна быть реализована к 2018 году, добавил Колупаев. “Это фактически сделает “Маяк” абсолютным технологическим лидером с точки зрения номенклатуры топливных композиций, которое наше предприятие сможет перерабатывать, потому что после освоения данной технологии у нас сможет быть переработана любая топливная композиция”, — сказал он.

“И финальной точкой станет, пожалуй, освоение переработки отработавшего топлива реакторов АМБ первой очереди Белоярской АЭС. Там проблема уже не столько в самих топливных композициях (на первом и втором блоках станции использовались несколько десятков видов топлива), а в геометрических размерах отработавших тепловыделяющих сборок”, — сообщил Колупаев.

Эти сборки достигают в длину 14 метров, и для того чтобы их разделывать, необходима специальная установка, пояснил он.

“Ее планируется создать к 2020 году. И вот тогда на “Маяке” будет полностью создан “всеядный” перерабатывающий комплекс – как по разным типам ОЯТ, так и по размерам отработавших тепловыделяющих сборок”, — отметил заместитель гендиректора “Маяка”.

Переработка радиоактивных отходов

Помимо переработки ОЯТ, “Маяк” активно занимается развитием технологии переработки радиоактивных отходов, напомнил Колупаев.

“В ближайшее время на предприятии планируется начать эксплуатацию установки по отверждению долгоживущих среднеактивных отходов, главным образом плутонийсодержащих, для которых цементирование, как, допустим, это делают наши коллеги в Великобритании, не является оптимальным. Наш подход базируется на применении керамоподобной матрицы, которая обладает большой долговечностью и хорошей емкостью по отходам”, — сказал он.

Прошлый год был для “Маяка” своего рода “пусковым” с точки зрения реализации проекта по переработке источников ионизирующего излучения, отметил Колупаев.

“Мы полностью выполнили свои обязательства по объему возврата источников. В этом году объемы возвращаемых на утилизацию источников будут существенно больше.

Мы оптимизируем технологию утилизации источников, чтобы удешевить ее и сделать более привлекательной для клиентов.

Это очень важное направление, которое позволит нашим партнерам получить законченный цикл услуг – с момента поставки источников до их полной утилизации”, — добавил он.

Богатство ядерных отходов

Экономика отработанного ядерного топлива

В случае успеха будет сделан важный шаг на пути создания в России технологического комплекса замкнутого ядерного топливного цикла.

В частности, должна получить подтверждение сама возможность повторного использования отработанного ядерного топлива (ОЯТ).

Применение этой инновационной технологии в промышленном масштабе позволит существенно снизить зависимость атомной отрасли от поставок природного урана, извлекаемые запасы которого ограниченны.

Объем добычи урана в России в 2017 году составил 2,9 тысячи тонн (годом ранее этот показатель был 3 тысячи тонн). Потребление же достигает 6,5 тысячи тонн.

Дефицит покрывается за счет импорта и из резервного фонда, созданного еще во времена СССР. При таком раскладе накопленные за десятилетия работы атомной отрасли тысячи тонн ОЯТ представляют ценный ресурс.

По оценке специалистов, 5 циклов РЕМИКС-топлива способны обеспечить потребности российских АЭС минимум на 60 лет.

Инновационное ядерное топливо производится из неразделенной смеси регенерированного урана и плутония, образующейся при переработке ОЯТ, с добавлением небольшого количества обогащенного урана. Таким образом, появилась реальная возможность повторно использовать не только плутоний, но и невыгоревший уран‑235.

«Вопрос прорабатывается в рамках одного из ключевых проектов программы Росатома «Создание технологии и обоснование опытно-промышленного производства РЕМИКС-топлива».

В настоящее время ведется обоснование инвестиций для выбора промышленной площадки для производства РЕМИКС-топлива», – сообщили «Профилю» в компании ТВЭЛ, отвечающей за технологические решения и координацию работ по данному проекту.

Работы активно ведутся в последние годы, и уже есть первые результаты, напоминают в пресс-службе топливной компании.

В частности, экспериментальные тепловыделяющие сборки конструкции ТВС‑2 М с РЕМИКС-твэлами производства Новосибирского завода химконцентратов в сентябре 2016 года были установлены для опытной эксплуатации в реактор ВВЭР‑1000 энергоблока № 3 Балаковской АЭС и успешно прошли два цикла облучения.

Сами пилотные твэлы были изготовлены с использованием топливных таблеток из уран-плутониевой смеси, произведенных во ВНИИНМ им. А. А. Бочвара, уточнили в пресс-службе компании.

Вторично использовать ОЯТ Росатом вынуждает непростая ситуация с ресурсной базой. Мировые запасы урана составляют примерно 5,9 млн тонн. На долю России приходится 720 тысяч тонн.

Проблема в том, что значительная часть этих богатств – более 90% – в экономическом отношении непригодна для разработки в современных условиях из-за предельно низких цен на уран.

Основная часть запасов находится в распределенном фонде недр АО «Атомредметзолото» и связана с четырьмя рудными районами – Стрельцовским в Забайкалье, Витимским в Республике Бурятия, Зауральским в Курганской области и Эльконским в Якутии, сообщили в пресс-службе Минприроды.

По данным ведомства, поисковые работы на уран на территории России за счет средств государственного бюджета проводятся в Новосибирской и Иркутской областях, Бурятии, Хабаровском и Забайкальском краях, Еврейской автономной области.

Перспективы выявления новых месторождений урана связаны со слабопроявленным и скрытым характером оруденения. Для определения поисковых площадей и участков необходимо проведение мелкомасштабных специализированных прогнозных исследований.

Отходы – в энергобаланс

Сегодня ядерные реакторы работают в основном на обогащенном уране‑235. В природном уране его содержание ограничено 0,71%. Общее количество данного изотопа в энергетическом эквиваленте сравнимо с мировыми запасами нефти, поясняет замдиректора Института ядерной физики и технологий НИЯУ МИФИ Георгий Тихомиров.

Это не так уж много – урана‑235 для производства ядерного топлива хватит не более чем на 100 лет. «Если же мы найдем способ использовать энергию другого изотопа – урана‑238, то получим источник энергии, который будет актуален несколько тысяч лет.

В результате ядерных реакций в реакторе из изотопа уран‑238 накапливается плутоний-239, который можно использовать в реакторах вместо урана‑235», – подчеркнул ученый.

Для масштабного использования атомной энергии человечеству необходимо освоить переработку ОЯТ для повторного использования делящихся изотопов, убежден Тихомиров.

Тестирование возможностей промышленного производства РЕМИКС-топлива нацелено на освоение и практическую апробацию технологий замкнутого ядерного топливного цикла, который необходим для развития атомной энергетики. Конечно, проект потребует инвестиций на этапе разработки технологии и ее внедрения.

Однако затраты можно будет компенсировать за счет коммерческого использования РЕМИКС-топлива на реакторах российского дизайна, в том числе и работающих в других странах.

В настоящий момент в Европе повторно используют переработанное ОЯТ, так называемое МОКС-топливо. РЕМИКС-топливо – «облегченный» вариант МОКС-топлива.

Оно в полном смысле слова инновационный продукт, более органичный для активной зоны существующих реакторов АЭС.

«Главный эффект будет заключаться в апробации элементов замкнутого топливного цикла, реализация которого необходима для развития атомной энергетики на долгосрочную перспективу», – убежден Тихомиров.

В свою очередь, первый вице-президент Российского союза инженеров Иван Андриевский говорит, что промышленное производство РЕМИКС-топлива важно по двум причинам.

Во‑первых, на Земле накоплены огромные запасы ОЯТ, что не может не вызывать беспокойства, поскольку оно имеет высокую радиоактивность.

«Несмотря на то, что современные технологии хранения ОЯТ отличаются высоким уровнем безопасности, потенциальная угроза остается, не говоря уже о том, что на транспортировку и хранение приходится тратить значительные суммы», – пояснил эксперт.

По его словам, мировая промышленность и энергетика постепенно становится все более «зеленой», дружественной к планетарной экологии.

В этой новой парадигме хранение ОЯТ выглядит устаревшей практикой, когда даже бытовой мусор и отходы производства начинают перерабатывать практически в полном объеме. На модель использования «вторсырья» постепенно переходит атомная отрасль РФ.

У атомщиков есть и другая мотивация – запасы урана‑235 в мире ограниченны. Развитие науки и технологий позволяет расширить топливную базу для АЭС, включив в нее уран‑238 и торий‑232.

Эту позицию разделяет заместитель директора Института экономики естественных монополий РАНХиГС Сергей Репетюк.

«С учетом того, что запасы ядерного топлива в мире ограниченны, исследования возможностей повторного использования ОЯТ, безусловно, являются перспективными.

Что касается непосредственно данного проекта, то оценить целесообразность его реализации можно будет после подготовки технико-экономического обоснования, когда будет понятна себестоимость РЕМИКС-топлива и другие технико-экономические показатели», – отметил он.

Российская атомная энергетика – одна из немногих отраслей, которые без тяжелых потерь пережили развал советской империи и продолжают успешно развиваться, создавая мировую славу отечественной науке, подчеркивает Андриевский. По его мнению, Росатом, создавая замкнутый цикл использования ядерного топлива, показывает потенциал развития наукоемких секторов экономики.

«Эффект от внедрения РЕМИКС-топлива видится огромным. Его использование позволяет, в частности, значительно снизить объем регенерированного урана и плутония в отходах и уменьшить потребление природного урана почти на 20%. Это шаг на пути к двухкомпонентной ядерной энергетической системе с тепловыми и быстрыми реакторами в замкнутом ядерном топливном цикле», – уверен Андриевский.

Мировой тренд

Россия, решив приступить к промышленному производству РЕМИКС-топлива, следует в мировом тренде. Наиболее сильные позиции у Франции, что неудивительно, учитывая число ее АЭС, считает Андриевский.

Французские атомщики успешно перерабатывают ОЯТ в МОКС-топливо, а также активно работают в направлении снижения объемов ядерных отходов.

КНР планирует построить собственный центр по переработке ОЯТ к 2030 году.

Работы в этом направлении также ведутся в Индии, Японии, Южной Корее. США находятся в некотором тупике – они и темой переработки активно не занимаются, и хранилище ОЯТ толком построить не могут, этот вопрос стоит у них остро уже не первый год. В то же время Финляндия и Швеция нацелены на долгосрочное хранение отработанного ядерного топлива, продолжает Андриевский.

Все страны, в которых есть ядерные реакторы, имеют запасы ОЯТ. Однако для повторного их использования необходимо обладать технологиями переработки.

Такие программы реализуют Россия, Евросоюз и Китай, в которых есть проекты по развитию реакторов на быстрых нейтронах, отмечает Тихомиров.

Говоря о преимуществах использования ОЯТ, следует помнить о высокой калорийности ядерного топлива, которая в миллион раз выше, чем у органического топлива, и, следовательно, на единицу полученной энергии ядерное топливо дает в миллион раз меньше отходов.

Чистая работа

Борцы за экологию, говоря, что Россия превращается в свалку ядерных отходов, нередко сгущают краски, что свойственно идеалистам, считает Андриевский. Мы действительно завозим к себе много ОЯТ. По некоторым данным, в хранилищах уже скопилось до 25 тысяч тонн отработанного топлива, отмечает он.

Критика защитников природы отчасти была справедливой, пока не создали технологию переработки ядерных отходов. Сейчас этот факт, конечно, нужно учитывать.

«Вполне возможно, что через 10 лет слова «свалка» и «отходы» употреблять станет неуместно и на смену им придут другие определения – «сырье» и «запасы», – заметил Андриевский.

В мире давно разрабатываются технологии переработки, изоляции и захоронения ОЯТ, но Россия уникальна тем, что у нас была сформулирована концепция радиационно-эквивалентного захоронения, напоминает Тихомиров.

Эта концепция предполагает, что переход атомной энергетики на замкнутый ядерный топливный цикл позволит возвращать в природу отходы, по радиотоксичности (опасности для людей) тождественные урану, который был добыт и использован для производства атомной энергии.

«Таким образом, в России разработана концепция практически безотходного производства энергии на основе ядерных технологий. Тезис о том, что Россия – свалка ядерных отходов, является мифом», – резюмировал ученый.

Читать полностью (время чтения 5 минут )

Вся польза отработавшего ядерного топлива

Экономика отработанного ядерного топлива

Мне кажется довольно интересным разобраться с экономикой отработанного ядерного топлива (ОЯТ). На Земле мало вещей с такой сложной экономической двойственностью: ОЯТ это и весьма опасный отход с крайне недешевой утилизацией, и одновременно источник многих уникальных элементов и изотопов, стоящих весьма немалые деньги.

Эта двойственность порождает сложный выбор о дальнейшей судьбе ОЯТ — вот уже много десятилетий подавляющее большинство стран, обладающих атомной энергетикой не могут определится, необходимо ли захоранивать ОЯТ или перерабатывать.

В этом тексте я по возможности аккуратно попытаюсь посчитать расходную и доходную часть экономики ОЯТ.

Использованные термины и сокращения:

Делящиеся материалы (ДМ) — собственно ядерное топливо, поддерживающее цепную реакцию деления (Pu239, U235, Pu241, U233). То, что называется топливом, на самом деле, кроме ДМ обычно содержит и другие материалы — кислород, уран 238 и продукты деления

Продукты деления — осколочные элементы, образующиеся из ДМ в результате реакции деления. Обычно радиоактивные изотопы от 70 до 140 номера таблицы Менделеева.

PWR/ВВЭР — самый распространенный в мире тип ядерных реакторов, с водой под давлением (не кипящей) в первом контуре, с тепловым нейтронным спектром.

БН — другой тип реакторов, с быстрым нейтронным спектром и натрием в качестве теплоносителя.

ЗЯТЦ — замыкание ядерного топливного цикла, перспективный метод расширения топливной базы ядерной энергетики. Подразумевает использование реакторов БН или БРЕСТ.

БРЕСТ — еще один тип реакторов, с быстрым нейтронным спектром и свинцовым теплоносителем, теоретически являющийся более безопасным, чем БН. Ни один подобный реактор пока не построен.

Дебит

Расходы на ОЯТ начинаются у оператора АЭС, когда оно покидает приреакторный бассейн выдержки и отправляется либо в сухое, либо в мокрое хранилище.

Удобно здесь и далее все расходы пересчитывать в удельные затраты на килограмм тяжелых металлов ОЯТ, так вот в случае отправки в сухое хранилище такие расходы составляют от 130 до 300 долларов на кг ОЯТ и определяются в основном стоимостью контейнеров хранения либо здания, в котором размещается ОЯТ. Из этой суммы от 5 до 30 долларов приходится на транспортные операции.

Загрузка в транспортный контейнер, пожалуй, самого дорогостоящего ОЯТ в мире — из уцелевшего бассейна выдержки 4 блока Фукусимской АЭС

Эти суммы, на самом деле, ничтожны. Килограмм ОЯТ, когда еще был топливом, выработал (если взять PWR/ВВЭР) от 400 до 500 МВт*ч электроэнергии, стоимостью где-то 16…50 тысяч долларов, т.е. перемещение в промежуточное хранение не стоит и 1% доходов от производства атомной электроэнергии.

Впрочем, промежуточное хранение на то и промежуточное, что у него должно быть какое-то продолжение. Это может быть либо прямое захоронение ОЯТ в неизменном виде, либо переработка.

Сухое контейнерное хранение является самым дешевым вариантом промежуточного хранения ОЯТ на сегодня — не нужно здание, если площадка расположена на территории АЭС — не нужна даже дополнительная охрана. Гигаваттный блок за год использует топлива примерно на 2,5 таких контейнера стоимость по 0,5–1 млн $ штука.

Глубокое захоронение ОЯТ сегодня реализуется в виде конкретных проектов в Финляндии, Швеции, США и Швейцарии и исследуется для разных площадок еще в двух десятках стран.

Пример Финляндии и Швеции показывает, что стоимость прямого захоронения будет скорее всего в районе 1000 долларов на килограмм ОЯТ или чуть ниже — и общие затраты к моменту окончательного снятия вопроса с ОЯТ с плеч оператора АЭС составят, соответственно что-то вроде 1000–1200 долларов на килограмм. Интересно, что эта сумма составляет примерно половину стоимости свежего топлива.

Контейнеры для окончательного геологического захоронения. Технология требует выдержки в 20–30 лет прежде, чем выполнять это захоронение, впрочем сегодня во многих странах нет проблем с поиском ОЯТ, которое хранится уже 30+ лет

Однако, стоимость прямого захоронения схожа со стоимостью переработки — может быть извлекая ценные материалы можно снизить общие расходы, или даже выйти в плюс?

Кредит

Основным мотивом к радиохимической переработке ОЯТ является наработанное в нем новое ядерное топливо, и чуть шире — вообще делящиеся материалы.

Стоимость этих извлекаемых материалов является неким якорем во всей экономике переработки, проще говоря, это однозначно самое ценное, что можно извлечь из ОЯТ.

Сравнивая со стоимостью U235, извлеченного из природного урана (примерно 25 тысяч долларов за кг) можно достаточно быстро прикидывать, стоит ли овчинка (переработка) выработки.

Если поискать информацию по стоимости переработки, то можно найти цифры от 700 до 2000 долларов за килограмм тяжелых металлов ОЯТ (без учета веса металлических частей тепловыделяющей сборки с топливом, с которыми тоже приходится возиться, и кислорода — ведь топливо в основном находится в форме оксида). В ОЯТ современных рабочих лошадок атомной энергетики — реакторов PWR/ВВЭР содержится от 1,5 до 2,5% делящихся материалов (первая цифра относится к современным конструкциям топлива, из которых выжимают по максимуму, вторая — к старому, вылежавшемуся ОЯТ).

Перегрузка на АО Маяк нового транспортного контейнера ТУК-141с топливом из реакторов Балаковской АЭС в сентябре этого года — начало процесса переработки

Можно перемножить. Потратив от 700 до 2000 долларов мы получим 25000х1,5–2,5%=375…625 долларов делящихся материалов.

Ситуация ухудшается еще больше, если вспомнить об изотопном составе извлеченных из ОЯТ PWR/ВВЭР делящихся материалов — уран будет загрязнен нейтронным ядом U236, а плутоний чуть ли не наполовину состоять из неделящихся изотопов (Pu240, Pu242).

Кроме того, последующая фабрикация свежего ОЯТ с довольно радиоактивным плутонием тоже дороже, чем работа с “органическим” обогащенным продуктом природного урана.

И тут в стройном (я надеюсь) повествовании по экономике ОЯТ, которое есть сегодня стоит сделать шаг в сторону и посмотреть так же на стоимость топливного цикла применительно к быстрым реакторам и ЗЯТЦ — то, что рассматривали специалисты в 60х и 70х как будущее отрасли.

Упрощенная (действительно упрощенная) схема топливного цикла с переработкой без быстрых реакторов довольно бесмысленна, о чем ниже.

И ситуация сразу улучшится.

Во-первых, быстрый спектр нейтронов требует гораздо большего количества делящихся материалов в активной зоне, что достигается увеличением их концентрации: до 20–30% плутония или 235 урана, против 4–5% для реакторов с тепловым спектром. Т.

е. для получения того же количества Pu239 нам надо переработать в 5–6 раз меньше ОЯТ. Кроме все мы помним о том, что быстрые реакторы — это бридеры, и в ОЯТ у них содержится больше ДМ, чем в свежем топливе!

Есть еще один аспект, если уж мы сравниваем ДМ из ОЯТ и природный уран. При концентрации ДМ в свежем топливе БН, скажем, 27%, выгорает из этого не больше 11%. Т.е. ⅔ добытого природного урана без переработки пойдут в отвал, что катастрофически роняет экономику быстрых реакторов без переработки ОЯТ (например, БН-600). Ситуация, фактически обратная ВВЭРам.

Но давайте посчитаем. Если из килограмма ОЯТ БН мы извлекаем 300 грамм плутония, то в эквиваленте природного урана наша прибыль — 7500 долларов, что заведомо больше стоимости переработки этого килограмма в 2000 долларов. Тут правда надо вспомнить, что сгорает в следующем цикле около ⅓ извлеченного количества, т.е. доход сокращается до 2500 долларов на килограмм ОЯТ.

Фактически это означает, что расходы на переработку ОЯТ — фабрикацию нового топлива для быстрых реакторов эквивалентны фабрикации топлива из природного урана — перерабатывающий “хвост” перестает быть обузой.

На деле, конечно, я упрощаю. всякие вещи, типа минорных актиноидов, захоронения продуктов деления тянут экономику переработки в низ, и реальный результат сильно зависит от технологии.

Для примера — ниже расчетные цифры по выходу разных неприятных вещей при переработки ОЯТ во Франции (для 6 разных сценариев развития этой переработки) в объеме, охватывающем ОЯТ от 100 до 150 гигаватт мощностей.

Ниже табличка, которая показывает сокращение потребности в природном уране за счет использования делящихся материалов из переработанного топлива.

А теперь посмотрим, нет ли еще чего полезного в ОЯТ, что могло бы улучшить экономику переработки в целом. Тут необходимо вспомнить, что продукты деления урана и плутония — это примерно 70 изотопов 25 элементов. Некоторые нуклиды — стабильные и радиоактивные, в принципе, представляют коммерческий интерес.

Палладий. На каждую тонну продуктов деления приходится примерно 5% палладия сложного изотопного состава. Т.е. из каждой тонны ОЯТ БН, содержащей 100 килограмм продуктов деления, можно будет извлечь около 5 килограмм палладия, из тонны ОЯТ ВВЭР — 800 грамм.

К сожалению, палладий будет радиоактивен из-за изотопа Pd-107 (его примерно 14% из всех изотопов палладия в ОЯТ), который имеет период полураспада 6,5 млн лет, т.е. дождаться его распада не получится.

Удельная активность извлеченного из ОЯТ палладия будет около 1,2 МБк/г — это довольно много, НРБ-99 устанавливает предел безопасного годового поступления палладия такой активности в 1,45 грамма в год.

Теоретически, если этот радиоактивный палладий найдет применение (в каких-нибудь промышленных катализаторах, скажем) и цена его будет равна цене природного (~30000 долларов за кг!), то добытый из ОЯТ палладий будет восполнять 1–2% стоимости переработки ОЯТ.

Родий. Другой металл платиновой группы. Из тонны ОЯТ БН можно будет извлечь 1,2 кг родия, а из тонны ОЯТ ВВЭР — порядка 500 грамм.

Самый долгоживущий радиоактивный изотоп Rh-102 с периодом полураспада 3,74 года, Где-то за 50 лет выдержки радиоактивность родия упадет до значений, после которых его можно считать не радиоактивным.

Стоимость родия примерно такая же (сейчас даже больше), чем у палладия, соответственно добытый из ОЯТ родий будет восполнять 0,3–0,5% стоимости переработки.

Рутений. Кроме печально известного Ru-106 среди продуктов деления есть и стабильные изотопы этого элемента.

Рутения по массе в ОЯТ примерно на 25% больше, чем палладия, а не радиоактивным (после распада основного количества Ru-106) он становится примерно за 40 лет выдержки.

К сожалению, стоимость рутения в 6 раз ниже, чем палладия, поэтому он так же добавляет при продаже всего 0,2–0,4% от стоимости переработки ОЯТ.

Серебро. Среди осколков деления его доля приблизительно 0,8%. Т.е. из этой тонны осколков его будет около 8 кг. Имеет два относительно долгоживущих радиоактивных изотопа. Ag-110m с периодом полураспада 250 суток и Ag-108m c периодом полураспада 418 лет.

Второй изотоп образуется со сравнительно малым выходом. Остаточная активность после 30 лет выдержки будет 2,9 мкКи/г, несколько повыше радиоактивности природного урана, но соизмеримо.

Пригодно для технического применения, однако из-за относительно низкой стоимости вряд ли экономически оправдано.

Ксенон. Это самый распространенный из осколков урана или плутония — только стабильные изотопы составляют около 12% массы продуктов деления. Не смотря на его низкую, на фоне палладия или рутения, стоимость (~50 долларов за кг) тот факт, что ксенон — это благородный газ делает его интересным.

При любой переработке ОЯТ ксенон выделяется в газообразном виде, поэтому никакой специальной радиохимии для его получения не нужно, что резко снижает себестоимость.

Есть, правда, одна проблема — хотя среди изотопов ксенона нет долгоживущих (подарок природы!), его всегда сопровождает криптон, изотоп Kr-85 которого является долгоживущим радиоактивным элементом.

Тем не менее криогенная ректификация может помочь получить чистый ксенон, который находит сегодня все больше применения в ионных двигателях космических аппаратов, в наркозе и т.п. Не смотря на это, мне не удалось найти следов практики сохранения ксенона при переработке ОЯТ — обычно его просто сбрасывают в атмосферу.

Технически есть еще несколько элементов, которые в будущем могут представлять интерес для извлечения из ОЯТ — например теллур. Однако текущая стоимость этих материалов, как и в случае серебра не оправдывает их добычи из ОЯТ.

Доли различных элементах в продуктах деления U235

В итоге получается, что в лучшем случае, при снятии барьеров на использование слабо радиоактивного палладия, драгоценные металлы могут вернуть около 2–2,5% стоимости переработки ОЯТ, а в худшем — порядка 0,5% и это означает, что их извлечением из осколочной массы никто заниматься не будет.

Баланс

Заканчивая описание этого раздела необходимо сказать, что выжидательная позиция по захоронению объясняется еще и возможным появлением новых методов переработки ОЯТ, например предлагаемой в рамках БРЕСТ электрорастворением расплава ОЯТ или еще более экзотичными ректификацией фторидов ОЯТ или разделением в виде плазмы. Теоретически, переработка ОЯТ может быть заметно дешевле, выигрывая по общим расходам у сценария с захоронением. Впрочем, стать этой теории практикой мешает позиция США, всячески препятствующей развитию переработки ОЯТ в мире, и технические сложности.

Возвращаясь к экономике: видя общую картину, хочется рассмотреть еще один вариант — бесконечное “промежуточное” хранение.

Если заглянуть в оценки операционных расходов площадки хранения, то мы увидим там цифры в 5–15 долларов на килограмм топлива в год, причем 90% этой суммы обуславливается стоимостью охраны площадки.

Получается, что разница между стоимостью прямого захоронения и накопленной стоимостью хранения выбирается за 50–100 лет, на которые обычно и рассчитываются контейнеры сухого хранения или здания хранения.

Получается следующая градация действий — дешевле всего “промежуточно” хранить, однако этот процесс рискует затянуться (как это происходит в США, где национальное захоронение ОЯТ обсуждается уже 40 лет) и стать существенным фактором в общей цене жизненного цикла ядерного топлива. Наилучшим мгновенным решением в плане стоимости является как можно более быстрое захоронение ОЯТ в глубокой геологии. Ну а если есть надежда на развитие атомной энергетики в сторону ЗЯТЦ — то необходимо развивать переработку ядерного топлива.

Кстати, посмотрите классный ролик про создание и испытания бетонной пробки для туннелей финского захоронения Онкало.

Пожалуйста, оцените статью:

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.