Как аккумулировать энергию солнца

Содержание

Аккумулирование тепловой энергии

Как аккумулировать энергию солнца

Как известно максимальная производительность солнечного коллектора имеет определенную величину, и зависит от площади солнечного коллектора и эффективности солнечного коллектора.

С той или иной точностью, зная все перечисленные параметры, мы можем рассчитать ожидаемую производительность любого типа солнечного коллектора за произвольный период времени (кВт·ч за единицу времени). При этом, чем дольше расчетный период времени, тем более точны расчеты производительности.

Таким образом, располагая значением суммарного годового солнечного излучения в Украине, можно относительно точно рассчитать прогнозируемую годовую производительность  коллектора. Однако практически невозможно рассчитать такой прогноз на отдельные дни в году или часы. Это и отличает гелиосистемы от других генераторов теплоты (котлы, тепловые насосы и т.д.).

Выработка тепла не совпадает с графиком потребления

Одной из особенностей работы гелиосистемы для бытового сектора является то, что солнечные коллекторы генерируют тепло на протяжении всего светового дня, в отличии от котла, который за короткий промежуток времени может обеспечить потребителя тепловой энергией. Из-за этого время выработки тепловой энергии и потребление не совпадают. Это видно на графике.

График выработки и потребления тепловой энергии при применении солнечных коллекторов

Данные особенности показывают, что для оптимальной работы гелиосистемы необходимо аккумулировать тепловую энергию. Для этих целей, как правило, используют баки-аккумуляторы. Их объем должен быть достаточным для хранения полученной солнечной энергии за день. В данном случае мы говорим о суточном аккумулировании тепловой энергии.

Для аккумулирования тепловой энергии чаще всего используют воду

Вода — общедоступный и эффективный теплоноситель, имеющий высокие показатели теплопроводности  c = 4,187 (кДж/кг·К) или с = 1,1163 (Вт·ч/кг·К) второе значение чаще используется в расчетах отопительной техники. Расчеты теплоаккумулирующей емкости совпадают как для систем ГВС так и отопительных систем.

Кроме суточного аккумулирования тепловой энергии, можно реализовать аккумулирование тепла на более длительный период времени. Такие системы называют системами с сезонным аккумулированием тепловой энергии. Для реализации таких объектов баки аккумуляторы должны иметь значительные объемы, что бы за летный период накопить тепло, которое будет потребляться за отапливаемый период.

Не всегда объем бака аккумулятора имеет решающее значение. Определяющим параметром служит теплоемкость. Для воды теплоемкость ограничена теплофизическими свойствами.

При атмосферном давлении мы можем нагреть воду до 95°С, поэтому при условии, что конечное значение температуры воды после использования теплоты будет 45°С,  мы можем получить не более 60 Вт/кг (w=1,1163·(95-45))=58,15 Вт/кг).

Альтернативные способы хранения тепла

Иногда для  целей повышения теплоемкости аккумулятора используют другие виды аккумулируемых сред (бетон, галька, металл и т.д.).

При равном объеме данные вещества обладают меньшей удельной теплопроводностью, однако их можно нагревать до более высоких температур, что в свою очередь увеличивает теплоемкость аккумулятора.

При нагревании на очень высокие температуры можно достичь значения теплоемкости до 400 Вт/кг.

Однако для использования с гелиосистемами температура нагрева аккумулятора тепла ограничена максимальной температурой нагрева солнечных коллекторов.

Так же хранение аккумулирующей среды с высокой температурой увеличивает тепловые потери, поэтому, как правило, аккумулятор заряжается до сравнительно невысоких температур (до 95°С) и используется с низко потенциальной системой отопления (теплые полы, фанкойлы).

Эффективно может аккумулироваться и теплота плавления некоторых материалов.  Для таких аккумуляторов тепла используют парафин, каустическую соду, и т.д.  При фазовом переходе во время плавления значение теплоемкости рассчитывается так:

W = m [ct (ϑ s –ϑ 1) + C + cs (ϑ 2 –ϑ s)], где

  • W — аккумулированная энергия  Дж;
  • m — масса аккумулирующего вещества  кг;
  • ct — удельная теплоемкость в твердом состоянии Дж / (кг·K);
  • cs — удельная теплоемкость в жидком состоянии  Дж / (кг· K);
  • C —  теплота плавления  Дж/кг ;
  • ϑ1 — начальная температура °С;
  • ϑs — температура плавления °С;
  • ϑ2 — температура нагрева °С;

5 изобретений на основе солнечной энергии, которые могут спасти Землю и обогатить инвестора

Как аккумулировать энергию солнца

Я давно интересуюсь альтернативными источниками энергии и чем больше вникаю в эту область, тем больше осознаю и понимаю, что за этим будущее, — пишет Котенко Максим на страницах издания mmgp.guru.

Ресурс планеты, такой как нефть, газ, уголь далеко не бесконечен, а вот солнечной энергии у нас более чем достаточно. И главный плюс здесь в том, что энергия солнца (если не учитывать производство и утилизацию компонентов ее добычи) полностью экологична.

Однако я не сомневаюсь, что в недалеком будущем, мы с вами сможем наблюдать безвредное и очень дешевое производство компонентов для добычи солнечной энергии.

И компании, которые будут развиваться в данном направлении, станут одними из самых влиятельных, востребованных и полезных человечеству.

В этой статье я рассмотрю, на мой взгляд 5 самых основных изобретений на основе солнечной энергии, что спасут нашу планету от экологической катастрофы и принесут инвестору хорошую прибыль.

На сегодняшний день ниша альтернативных источников на основе солнечной энергии практически свободна в русскоязычных странах.

И любой предприниматель, который осознано и грамотно подойдет к этому аспекту, сможет полностью реализовать свой потенциал, внести свой вклад в экологию планеты, а также очень хорошо заработать.

Итак, моя пятерка изобретений на основе солнца, которые позволят нашим детям дышать чистым воздухом и сделают инвестора богатым:

1. Солнечная черепица — для создания автономных солнечных крыш

Солнечные панели в том виде, которые мы наблюдаем сейчас — отойдут на задний план, они станут гораздо крепче, меньше и эффективней. Зачем устанавливать панели на крышу, если можно сделать саму крышу из солнечной черепицы? Такое решение предлагает компания Илона Маска Solarcity, более того им уже удалось реализовать несколько проектов крыши из солнечной черепицы в одном из городов США.

Крыша на солнечной черепице от SolarCity по стоимости не особо отличается от любой другой черепичной крыши, однако она способна как минимум в течении 15 лет сделать ваш дом полностью автономным и независимым от городского энергоснабжения.

А если еще в гараж вашего дома добавить электромобиль вроде Tesla Model X и во дворе пробурить артезианскую скважину — то вы станете полностью свободны от трат на городской транспорт и коммунальные услуги, минимум на ближайшие десять лет.

Представляю вашему вниманию видео-презентацию солнечной крыши и необходимых компонентов для ее работы. Проводит презентацию основатель и главный акционер SolarCity — Илон Маск:

2. Powerwall — аккумулирующие батареи для обеспечения жилых зданий солнечной энергией

Powerwall — еще одно изобретение от компании Tesla стоимостью около $3000, что способно аккумулировать энергию от солнечных панелей и питать ей дом в момент низкой солнечной активности, например ночью. Пока альтернативы по качеству и ценовому соотношению батареям Tesla нету (у них самое высокое качество и производительность).

Однако я уверен что в будущем будет множество литий-ионных батарей способных конкурировать с Tesla-powerwall, не только по ценовым показателям. Вообще эра аккумулирующих батарей только начинается и в недалеком будущем наука нам сможет предложить много интересных разработок в данной области.

А пока смотрите видео сюжет на тему батарей Tesla-Powerwall:

А вот полная видео-презентация в исполнении Илона Маска, которая полностью обеспечивается альтернативной энергией, что аккумулирована в батареях Powerwall:

3. Солнечный коллектор для нагрева воды и отопления дома в межсезонье

В недалеком будущем — солнечный коллектор для нагрева воды, будет незаменимым атрибутом в каждом современном домохозяйстве. Если взять семью в 4 человека, то каждый день на один только бойлер 100 литров тратиться минимум 5 КВТ электроэнергии, за месяц набегает довольно крупная сумма, что значительно бьет по семейному бюджету.

Однако солнечный коллектор, работающий в связке с термобаком окупит себя уже за 5-7 лет и будет давать бесплатную горячую воду вашему дому минимум 15-20 лет. Это особенно выгодно для южной местности, а также для владельцев частных пансионатов, где горячая вода используется крайне часто в летний период.

Смотрите мини сюжет, снятый журналистами одного из телеканалов о солнечных коллекторах и их роли в теплоснабжении частных домов:

А вот как удалось одному из предпринимателей реализовать солнечный коллектор в своем домашнем хозяйстве:

4. Автономные зарядки для электромобилей на солнечных панелях

Автономные зарядки для электромобилей — пожалуй самое свободное и перспективное направление в данной отрасли в русскоязычных странах, в этом у вас не будет никакой конкуренции, просто берите и делайте.

Единственная проблема здесь в том: как разместить на минимальной площади, максимальное количество солнечных панелей, способных дать нужную мощность тока для быстрой зарядки электромобиля.

Давайте посмотрим, как уже удалось решить эту проблему в современных странах:

Еще одна абсолютно свободная ниша, которая в своей перспективе имеет явное преимущество перед обычными солнечными панелями, что крепятся к крышах, ведь помимо собирательной функции, это также полноценные дороги по которым могут ездить автомобили, ходить пешеходы и т.д.

Солнечные дороги только начинают строить и пока это все больше похоже на фантастику, чем на реальность.

Но сомнений нет, что если технологический прогресс и дальше будет развиваться с такой же скоростью, то в богатых странах подобные солнечные дорожки станут обыденной реальностью и будут строиться целые автомагистрали из аккумулирующих элементов. Ниже представленный сюжет, более подробно раскроет мою идею:

Жалюзи на солнечных панелях

И в дополнении к теме, скидываю очень интересный сюжет об украинском разработчике, который изобрел жалюзи на солнечных панелях. С такими жалюзи можно значительно сэкономить траты на электроэнергию и как минимум бесплатно заряжать мобильные устройства.

***

Подписывайтесь на наш канал в Telegram!

Солнечная энергия

Как аккумулировать энергию солнца

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия – это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы – трубчатого вида и в виде плоских коллекторов.

Принцип действия – под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия – потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.

Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи.

Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области:«Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;«Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:«Бурибаевская», установленной мощностью 20,0 МВт;«Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:«Кош-Агачская», установленной мощностью 10,0 МВт;«Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:«Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:«АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.
Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя – в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика – перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса – обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы – можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся:

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются:

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.
Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:
  • В 2009 году – «Основные направления государственной политики в сфере повышения энергетической эффективности электроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года».
  • Помощь государства при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии.
  • Создание, на законодательном уровне, экономических рычагов, способствующих развитию «зеленой» энергетики, выражающихся в установлении льготных тарифов, финансовой помощи при строительстве, налоговые льготы и компенсация части кредитных затрат на строительство.

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

Использование энергии солнца на земле: способы применения и преимущества солнечных установок

Как аккумулировать энергию солнца

О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории.

Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было.

Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.

Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.

Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:

  • космос и авиация;
  • сельское хозяйство;
  • обеспечение энергией спортивных и медицинских объектов;
  • освещение участков частных домов или городских улиц;
  • использование в быту;
  • электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.

Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах.

Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие.

Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».

Особенности применения

Свет и тепло Солнца используются с помощью различных технологических методик. Как правило, выработка электроэнергии имеет целью питание отдельных или массовых потребителей, а тепловая энергия служит для обогрева жилья, теплиц, промышленных и общественных помещений.

Использование солнечной энергии на Земле ведется по двум направлениям: пассивное и активное. Оба способа имеют свои особенности и возможности, которые следует рассмотреть внимательнее.

Пассивные системы

Пассивные системы — это различные сооружения или строения, в которых использование энергии Солнца происходит путем потребления. Например, существуют дома, построенные из специальных материалов, которые способны поглощать или перерабатывать полученную тепловую энергию. Обогрев таких зданий становится проще или в нем вовсе исчезает необходимость.

Необходимо понимать, что в виду имеются не какие-то современные и продвинутые материалы, созданные на высокотехнологическом оборудовании. Дома, образующие пассивные системы, создаются из обычной древесины, теплоизолирующих и светоизолирующих панелей. Даже обычная ориентация окон дома на южную сторону автоматически переводит дом в разряд пассивных гелиосистем.

Первым в истории зафиксированным случаем, когда использование солнечной энергии было сознательным действием, была постройка дома Плинием Младшим в Италии (100 г. Н. Э.). Слюдяные окна оказались эффективным теплоизолятором, способным удерживать тепловую энергию, полученную от Солнца.

В современном мире интерес к постройке зданий-пассивных гелиосистем то возрастает, то вновь падает.

Энергетический кризис вынуждает активно искать способы получения дешевой альтернативной энергии, но при улучшениях экономической обстановки ситуация разворачивается в обратную сторону.

Однако, общая обстановка демонстрирует постоянное развитие и продвижение гелиосистем в технике и быту.

Активные системы

Активные солнечные системы получают энергию и преобразуют ее тем или иным способом.

В данном случае используются специально изготовленные приспособления и устройства, для которых получение, преобразование и передача энергии является основной и единственной задачей, а не дополнительной функцией, как у пассивных гелиосистем.

Существуют довольно простые и более сложные конструкции, выполняющие разные задачи. По функционалу их можно разделить на фотоэлектрические элементы и солнечные коллекторы.

Первые занимаются выработкой электрического тока из энергии, полученной от нашего светила. Они обладают широкими возможностями и встречаются практически везде, где применяют энергию Солнца.

Вторые — коллекторы — используются только как источник тепловой энергии для отопительных систем частных домов или иных помещений относительно небольшого размера. И те, и другие устройства обладают собственными преимуществами и недостатками. Рассмотрим их подробнее.

Солнечные фотоэлементы

Фотоэлектрические элементы получают солнечную энергию и вырабатывают из нее электрический ток. Такова общая схема, на практике все несколько сложнее. Солнечные лучи, попадая на поверхность фотоэлементов, воздействуют на кремниевые пластины, в которых начинается процесс замещения электронов.

Они начинают активно совершать p-n переход, т.е. появляется постоянный фототок. Остается только припаять провода к соответствующим контактам, и можно снимать постоянное напряжение определенной величины.

Если собрать такие элементы в батарею, то в результате можно получать вполне существенный ток, пригодный для зарядки аккумуляторов или практического использования.

Выработка тока фотоэлементами нестабильна, зависит от внешних факторов — погоды, времени года и суток, наличия облачности. Кроме того, солнечные батареи дают постоянный ток. Для обеспечения потребителей электротоком со стандартными параметрами необходимо преобразовать полученное напряжение.

Поэтому обычный состав комплекса выглядит следующим образом:

Работа системы заключается в приеме солнечной энергии фотоэлементами и сбрасывании напряжения на аккумуляторы. Уровень заряда находится под управлением контроллера, который выполняет функции диспетчера и регулирует режим заряда и отдачи энергии.

Преобразование постоянного тока в переменный выполняет инвертор, с которого питание подается на стандартные приборы потребления.

Использование солнечной энергии таким способом наиболее эффективно, так как в результате получается универсальный вид, пригодный для питания большого количества установок, приборов и устройств.

Фотоэлементы, или солнечные батареи, как их называют в обиходе, бывают нескольких видов: кремниевые и пленочные.

Количество кремния в окружающей природе очень велико, чем и объясняется популярность этого типа фотоэлементов. Существуют разные виды кремниевых солнечных батарей:

  1. Монокристаллические. Их КПД приближается к 20%, что для современных фотоэлементов весьма высокий показатель. Производятся из очищенного материала, монокристалла, разрезанного на тонкие пластинки. Внешне такие панели похожи на соты или ячейки черного цвета. Самые дорогие и качественные
  2. Поликристаллические. При изготовлении используется срез из медленно охлажденного расплава кремния. Полученные пластинки состоят из множеств кристаллов, ориентированных в разные стороны. КПД — до 18%. Цвет ячеек синий, отличить их легко. Стоимость заметно ниже, чем у монокристаллических панелей
  3. Аморфные. Представляют собой слой силана (кремневодорода), нанесенного на гибкую подложку. КПД всего 5%, но способность поглощать солнечные лучи намного выше — почти в 20 раз, поэтому аморфные панели весьма хороши для пасмурной погоды. Стоимость самая низкая из всех кремниевых видов

Пленочные батареи производятся из различных полимеров, способных демонстрировать полупроводниковый эффект. Их разрабатывают с целью снижения себестоимости производства фотоэлементов, а также для улучшения характеристик панелей. Существуют разные виды:

  • на основе теллурида кадмия;
  • на базе селенида меди-индия;
  • на полимерной основе.

Пока пленочные образцы уступают кремниевым как по КПД, так и по остальным показателям (кроме цены), но производители не теряют бодрости и уверяют пользователей в скором изменении ситуации.

Использование фотоэлементов для производства электротока позволяет получать количество энергии, достаточное для питания любых потребителей, главное — достаточное количество панелей. В этом заключается одно из основных преимуществ солнечной энергетики — способность расширяться путем наращивания количества светоприемных элементов, а не с помощью замены всего оборудования.

Солнечные коллекторы

Эти устройства действуют по совершенно иному принципу. Они не используют высокотехнологичных материалов, получая от Солнца только тепловую энергию. Принцип действия коллекторов основан на способности солнечных лучей заметно нагревать предметы.

Наиболее простая модель представляет собой плоский ящик черного цвета, накрытый прозрачной крышкой. Темная поверхность принимает солнечное тепло, нагревается, но отдавать его в окружающую атмосферу не может — мешает эффект парника, образованный прозрачной крышкой.

На практике конструкции солнечных коллекторов несколько отличаются:

  1. Открытые. Самые простые (если не примитивные) приемники, представляющие собой продолговатые лотки из черной пластмассы, наполненные водой. Лотки нагреваются и отдают тепло воде. Которая используется для летнего душа или подогрева воды в бассейне. Этот вид не может похвастаться ни КПД, ни долговечностью, но простота и возможность сделать открытые коллекторы самостоятельно дали определенную популярность
  2. Трубчатые. Приемниками энергии являются вакуумные стеклянные трубки. Они имеют коаксиальную конструкцию (тип «труба в трубе», между ними вакуум для теплоизоляции). Соединяются в распределитель и подключаются к отопительному контуру
  3. Плоские. Больше всего они напоминают вышеупомянутую модель — черный ящик с прозрачной крышкой. На поверхность днища плотно крепится трубка с водой, получающей тепловую энергию от контакта с нагретым материалом

Использовать солнечные коллекторы можно только в определенных условиях. Если стоит мороз, полезный эффект будет практически незаметен.

Необходимо, чтобы температура воздуха было довольно высока, что делает использование солнечного обогрева доступным только в достаточно теплых регионах.

Коллекторы используются только для обогрева помещений, поэтому их функционал и возможности заметно ниже.

Преимущества солнечных установок

  • Основным преимуществом является неограниченно высокий ресурс источника — Солнца. На самом деле, поток энергии имеет определенные пределы, но на нынешнем этапе развития технологии достичь этого предела совершенно невозможно.
  • Вторым преимуществом является отсутствие стоимости энергии. Она просто есть, и ей можно и нужно пользоваться.
  • Кроме того, появление источника предсказуемо и может быть заранее рассчитано с точностью до секунд, что заметно отличает его от других альтернативных видов энергии.

Проблемы использования солнечной энергии

Применение солнечной энергии имеет и некоторые проблемы.

Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий.

Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.

Перспективы развития

Энергия Солнца на Земле неиссякаема.

Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.

Принцип работы солнечной батареи для дома: устройство, схема, эффективность

Как аккумулировать энергию солнца

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии.

В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию.

Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца.

В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный.

Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Немного истории

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века.

Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций.

Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины.

Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение.

Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

Устройство

Конструкция солнечной батареи очень проста.

Основу конструкции устройства составляют:

  • корпус панели;
  • блоки преобразования;
  • аккумуляторы;
  • дополнительные устройства.

Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.

Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.

От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.

Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.

Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.

Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.

Как подключается

Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.

Разновидности солнечных батарей

Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.

Выделяют три вида фотоэлементов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.

Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.

Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.

Преимущества и недостатки

Основные преимущества солнечных батарей:

  • солнечная энергия абсолютно бесплатная;
  • позволяют получать экологически чистую электроэнергию;
  • быстро окупаются;
  • простая установка и принцип работы.

Недостатки:

  • большая стоимость;
  • для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
  • эффективность существенно падает в облачную погоду.

Как добиться максимальной эффективности

При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час.

В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.

Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.

Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.

Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.

Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.

При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.

Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.

Как устроена солнечная батарея, расскажет наше видео.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.