Математические парадоксы возраста

Математические парадоксы

Математические парадоксы возраста

Вернёмся к апории «Ахиллес и черепаха», ведь она имеет непосредственное отношение к математике:

«В классическом курсе логики, написанном Вильямом Минто, прославленный бегун легко опережает свою недостойную соперницу, хотя дает ей фору не только в расстоянии — 100 саженей (здесь употреблены старинные русские, а не древнегреческие меры длины, однако это не имеет значения), но и в скорости: он двигается не в полную силу — всего в десять раз резвее черепахи. То есть, по существу, шагает себе не торопясь, уверенный в победе. Правда, добравшись до места, откуда тронулась в путь-дорогу нерасторопная ставленница Зенона, Пелеев сын увидит, что та успела переползти еще на 10 саженей вперед. Пока Ахилл преодолеет эти 10 саженей, черепаха уйдет еще на сажень. Что ж, быстроногому ничего не стоит покрыть какую-то там сажень. А неуклюжая тем временем переместится — пусть на одну десятую сажени, но все-таки вперед, прочь от преследователя! С каждым шагом расстояние сокращается. Таких шагов будет, очевидно, бесчисленное множество. Не беда: современная математика научилась суммировать бесконечные последовательности. И Минто строит бесконечный ряд: 100 + 10 + 1 + 0,1 + 0,01 + 0,001 +… Перед нами убывающая геометрическая прогрессия. Её сумму запросто подсчитает любой теперешний школьник, если, конечно, он уже прошел алгебру по учебнику, кажется, для восьмого класса; эта сумма равна 111 1/9. Проделав нехитрый подсчет, Минто заключает: „Софист хочет доказать, что Ахилл никогда не догонит черепаху, а на самом деле доказывает лишь то, что Ахилл перегоняет её между 111-й и 112-й саженями на их пути“. Вроде бы правильно. Вроде бы логично. Увы, торжествующий опровергатель не ответил посрамленному софисту, ибо вопрос ставился иначе: не когда, а как возможна подобная встреча…» (Бобров, 1966).

Для того чтобы решить фундаментальную задачу, необходимо, как говорится, «докопаться до сути». Именно, «докапывание до сути» и приводит к парадоксам и противоречиям. А затем парадокс или противоречие необходимо разрешить (снять). Так что есть две половинки пути: формулировка противоречия и его разрешение.

Предлагаем ещё один, уже не такой старый парадокс, как в случае с лжецом, — парадокс вероятности.

Парадокс вероятности (обсуждение на семинаре «Междисциплинарные исследования»)

С. Ёлкин.

Если представить мысленный эксперимент с бросанием точки на плоскость, то исходным постулатом является то, что вероятность попасть в какую-либо конкретную точку плоскости равна нулю (невозможное событие). Но при этом вероятность, что точка попадёт на плоскость, равна единице (достоверное событие). То есть, в конце концов, реализуется одно из невозможных событий.

В. Ковалёв. Да, внутри всякой реальности сидит противоречие, которое её как раз и созидает. Найти самое глубокое противоречие для данной реальности — это даже не полдела, а почти всё дело.

Потому что решение противоречия содержится в нём самом, и значит, надо просто понаблюдать, как оно разрешает само себя. Противоречие — это соотношение противоположностей, и потому надо увидеть, каковы они в рамках рассматриваемой системы.

Это обычно очень трудно, потому, что мешает спутанность отношений, масса привходящих обстоятельств и т. д.

А насчёт парадокса вероятности, то тут, думаю, не всё так безнадёжно, как кажется. Плоскость по отношению к точкам — это ведь их целое, которое не сводится к ним и не состоит из них. Поэтому не надо их ставить «на одну доску». Попасть абсолютно точно в часть невозможно, а в целое — запросто, потому как оно везде.

С. Ёлкин.

Неясно, почему «невозможно абсолютно точно попасть в часть»? Добавлю, так, «про между прочим», что этот парадокс послужил одной из тех причин, по которой великий Давид Гильберт сформулировал проблему создания аксиоматической теории вероятности и включил её в число выдающихся проблем математики на том самом выдающемся конгрессе математиков[89]. Проблема эта была разрешена только более 30 лет спустя другим великим математиком — А. Н. Колмогоровым[90].

В. Ковалёв. Во-первых, я никак не могу взять в толк, как можно попасть в то, что не имеет размеров, то есть в точку. Во-вторых, точность — это идеализация, химера нашего ума, а в реальном мире ничто не может абсолютно точно совпасть друг с другом, ничто не может абсолютно заменить другое.

В-третьих, не надо путать математику с логикой, а логику формальную (математическую) с диалектической, то есть рассудок с разумом. Математика — предел формализации как таковой, то есть рассудок чистейшей воды, который умеет только разделять, фиксировать и связывать внешней связью эти выделенные им неподвижности.

Созданная математикой абстракция точки, то есть дискретности как таковой, у которой единственное свойство — отсутствие свойств, — ярчайший пример голого рассудка. Плоскость же по отношению к точке есть её прямая противоположность, то есть континуум, непрерывность как таковая.

Математика — это только фиксация их различия и ничего более. А в чём состоит их тождество, она не знает, это уже вопрос философии, которая на что-нибудь да может-таки сгодиться.

Наше сознание в любом процессе познания то проваливается в голую математику, то поднимется на уровень философии, и только так, пульсируя, оно может получить действительное знание.

А. Трушечкин[91]. Общепринятый ответ на этот парадокс — что «невероятное» не означает «невозможное». Невероятное событие — вероятность которого равна нулю, невозможное — которое не может произойти. На это можно возразить: «Как же? Согласно исходным идеям теории вероятностей, если вероятность равна нулю, то событие и есть невозможное!»

Тогда тут, пожалуй, можно разобрать подробнее, как мы делаем вывод о том, что вероятность попадания в точку равно нулю. Здесь речь идёт о геометрической вероятности. Предположим для простоты, что мишень ограниченна: например, это круг единичной площади, и мы стреляем по нему безразмерными пулями.

Тогда вероятность попадания в произвольную область этого круга равна площади этой области. Площадь точки равна нулю. Почему? Ответ: по определению (из теории меры) множество имеет площадь ноль, если его можно накрыть множеством сколь угодно малой площади. Для точки можно это сделать.

Например, рассмотреть последовательность маленьких кружков с центрами в этой точке и радиусами, стремящимися к нулю. Вероятность попадания в кружок с уменьшением его радиуса уменьшается, но не ноль. То есть множество нулевой площади определяется не непосредственно, а как бы итеративно, путём приближения множествами уменьшающейся площади.

Поэтому и утверждение о том, что вероятность попадания в точку равна нулю, можно воспринимать так же: здесь не чистый ноль, а бесконечно малая последовательность чисел. Попасть в точку можно, но вероятность исчезающе мала.

Таким образом, в этих рассуждениях всплывает на поверхность то, что точка — это идеализация очень маленького множества (конец обсуждения)

Так что, любезный наш читатель, зря старался А. Н. Колмогоров?

ВОПРОС № 97

Парадокс неожиданности. Однажды в воскресенье начальник тюрьмы вызвал преступника, приговорённого к казни, и сообщил ему: «Вас казнят на следующей неделе в полдень.

День казни станет для вас сюрпризом, вы узнаете о нём только когда палач в полдень войдёт к вам в камеру». Начальник тюрьмы был честнейшим человеком и никогда не врал.

Заключённый подумал над его словами и улыбнулся: «Вы не сможете казнить меня, если хотите выполнить свои обещания!»

Тем не менее, начальник тюрьмы выполнил свои обещания, и узник был казнён неожиданно для него, как и было обещано! Как это возможно?

Парадоксы теории множеств

«Никто не может изгнать нас из рая, созданного нам Кантором!» — заявил Давид Гильберт по поводу теории множеств Георга Кантора. Таково было чувство восторга от новой «игрушки» у математиков того времени. В 1873 году Кантор ввел понятие множества. Первоначально новая теория помогла решить ряд проблем. Однако очень скоро в ней обнаружились противоречия.

Первое противоречие возникло благодаря введению и анализу самого большого множества из всех: множества всех множеств. Простейший вопрос «Существует ли множество всех множеств?» тут же приводит к парадоксу.

Для этого надо напомнить, что в теории множеств разрешима процедура включения одного множества в состав другого или «взятие множества от множества».

(Это вам ничего не напоминает? Правильно — вездесущую рекурсию!)

Можно включать какие угодно множества в состав одного — их объединяющего, до тех пор пока все множества не исчерпаются. Тогда мы получим сверхмножество, которое включает в себя все остальные множества.

Все! Но не все! Само сверхмножество (множество всех множеств) оказалось не включённым! Ведь его вначале не было, а теперь оно появилось. Ну что же, включим теперь и его. Но тогда появляется новое сверхмножество, которого только что ещё не было.

Тогда и его включим, и так до бесконечности! То есть множество всех множеств и существует, и не существует одновременно!

Причиной парадокса является возможность быть множеству элементом самого себя. Можно конечно ограничить эту возможность, но тогда исчезнут многие очень полезные возможности теории множеств. Лучше локализовать проблему, и для этого разделить все множества на два типа, те, которые содержат себя в качестве своего элемента, и те, которые не содержат..

В 1901 году Бертран Рассел в письме коллеге изложил мысль, которая в популярной форме известна как «Парадокс брадобрея»: «В одной военной части был брадобрей. Ему было разрешено под угрозой смертной казни брить только тех военнослужащих, которые не бреются сами. Но вот беда — сам брадобрей тоже был на службе. Мог ли он в таком случае побриться сам?»

Если он себя побреет, то окажется тем, кого ему брить категорически запрещено, а если не побреет, то окажется среди тех, кого брить ему можно!

Словом, в теории множеств выявилось много противоречий[92], а на их устранение потратили огромное количество усилий. Собственно, как и в случае с математическим анализом, который первоначально был противоречив и только трудами титанов — Коши, Вейерштрасс, Гейне — приведён в образцовое состояние. В условно образцовое.

Ибо все противоречия математического анализа были упрятаны в его определения, совмещающие в себе невозможное. Достаточно вспомнить бесконечно малые и бесконечно большие величины, которые «куда-то стремятся, но никогда своего предела не достигают».

При этом само стремление к пределу происходит вне времени, что невозможно само по себе — в природе такое не наблюдается.

ВОПРОС № 98

Сколько яблок на рисунке?[93]

Детский парадокс

В математике имеется огромное число парадоксов и противоречий. Никто даже не знает сколько — так велика математика! Кстати, это обстоятельство ничуть не мешает нам её любить!

Тем нашим читателям, у кого подрастают дети, ещё предстоит хлебнуть из-за этой «парадоксальности»:

— Папа, существует ли самое большое число?

— Да, существует? — папа пытается отделаться от навязчивого почемучки.

— А что будет, если к нему прибавить единицу?

Очевидно, что ответ неудовлетворителен. Отец в затруднении.

— Нет, Не существует. Так как натуральный ряд стремится к бесконечности! — папа пытается продемонстрировать образованность.

— А можно это несуществующее число, ну, эту бесконечность, обозначить?

— Да, можно.

— А если отнять от этого не существующего числа единицу, мы получим существующее число?

— Нет!

— А если отнять от этого не существующего числа две единицы, мы получим существующее число?

— Нет!

— А если отнять от этого не существующего числа бесконечность натуральных чисел, мы получим существующее число? Ведь это бесконечности одинакового порядка!

— Э… Да! Получим.

— Тогда где, на каком числе несуществующее число превращается в существующее?

[89]Проблемы Гильберта — список из 23 кардинальных проблем математики, представленный Давидом Гильбертом на II Международном Конгрессе математиков в Париже в 1900 году. Конечно, это была не главная причина. Главной причиной было желание сделать теорию вероятности математической дисциплиной, так как в то время она считалась отраслью естествознания.

[90]Аксиоматика Колмогорова — общепринятый аксиоматический подход к математическому описанию события и вероятности; предложен Андреем Николаевичем Колмогоровым в 1929 г., окончательно в 1933 г.; придал теории вероятностей стиль, принятый в современной математике.

[91]А. С. Трушечкин, доцент кафедры № 28 (Системный анализ) НИЯУ МИФИ.

[92]См. например: И.Я Ященко. Парадоксы теории множеств. — М.: Московский центр непрерывного математического образования, 2002.

[93]Этот парадокс публикуется впервые, равно как и следующий за ним «детский» парадокс.

Занимательные логические парадоксы

Математические парадоксы возраста

Учёные и мыслители с давних времён любят развлекать себя и коллег постановкой неразрешимых задач и формулированием разного рода парадоксов. Некоторые из подобных мысленных экспериментов сохраняют актуальность на протяжении тысяч лет, что свидетельствует о несовершенстве многих популярных научных моделей и «дырах» в общепринятых теориях, давно считающихся фундаментальными.

Предлагаем вам поразмыслить над наиболее интересными и удивительными парадоксами, которые, как сейчас выражаются, «взорвали мозг» не одному поколению логиков, философов и математиков.

1. Апория «Ахиллес и черепаха»

Парадокс Ахиллеса и черепахи — одна из апорий (логически верных, но противоречивых высказываний), сформулированных древнегреческим философом Зеноном Элейским в V-м веке до нашей эры. Суть её в следующем: легендарный герой Ахиллес решил посоревноваться в беге с черепахой.

Как известно, черепахи не отличаются прыткостью, поэтому Ахиллес дал сопернику фору в 500 м. Когда черепаха преодолевает эту дистанцию, герой пускается в погоню со скоростью в 10 раз большей, то есть пока черепаха ползёт 50 м, Ахиллес успевает пробежать данные ей 500 м форы.

Затем бегун преодолевает следующие 50 м, но черепаха в это время отползает ещё на 5 м, кажется, что Ахиллес вот-вот её догонит, однако соперница всё ещё впереди и пока он бежит 5 м, ей удаётся продвинуться ещё на полметра и так далее.

Дистанция между ними бесконечно сокращается, но по идее, герою так и не удаётся догнать медлительную черепаху, она ненамного, но всегда опережает его.

© www.student31.ru

Конечно, с точки зрения физики парадокс не имеет смысла — если Ахиллес движется намного быстрее, он в любом случае вырвется вперёд, однако Зенон, в первую очередь, хотел продемонстрировать своими рассуждениями, что идеализированные математические понятия «точка пространства» и «момент времени» не слишком подходят для корректного применения к реальному движению. Апория выявляет расхождение между математически обоснованной идеей, что ненулевые интервалы пространства и времени можно делить бесконечно (поэтому черепаха должна всегда оставаться впереди) и реальностью, в которой герой, конечно, выигрывает гонку.

2. Парадокс временной петли

«Новые путешественники во времени» Дэвида Туми

Парадоксы, описывающие путешествия во времени, давно служат источником вдохновения для писателей-фантастов и создателей научно-фантастических фильмов и сериалов.

Существует несколько вариантов парадоксов временной петли, один из самых простых и наглядных примеров подобной проблемы привёл в своей книге «The New Time Travelers» («Новые путешественники во времени») Дэвид Туми, профессор из Университета Массачусетса.

Представьте себе, что путешественник во времени купил в книжном магазине экземпляр шекспировского «Гамлета». Затем он отправился в Англию времён Королевы-девы Елизаветы I и отыскав Уильяма Шекспира, вручил ему книгу. Тот переписал её и издал, как собственное сочинение.

Проходят сотни лет, «Гамлета» переводят на десятки языков, бесконечно переиздают, и одна из копий оказывается в том самом книжном магазине, где путешественник во времени покупает её и отдаёт Шекспиру, а тот снимает копию и так далее… Кого в таком случае нужно считать автором бессмертной трагедии?

3. Парадокс девочки и мальчика

Мартин Гарднер / © www.post-gazette.com

В теории вероятностей этот парадокс также называют «Дети мистера Смита» или «Проблемы миссис Смит».

Впервые он был сформулирован американским математиком Мартином Гарднером в одном из номеров журнала «Scientific American».

Учёные спорят над парадоксом уже несколько десятилетий и существует несколько способов его разрешения. Поразмыслив над проблемой, вы можете предложить и свой собственный вариант.

В семье есть двое детей и точно известно, что один из них — мальчик. Какова вероятность того, что второй ребёнок тоже имеет мужской пол? На первый взгляд, ответ вполне очевиден — 50 на 50, либо он действительно мальчик, либо девочка, шансы должны быть равными.

Проблема в том, что для двухдетных семей существует четыре возможных комбинации полов детей — две девочки, два мальчика, старший мальчик и младшая девочка и наоборот — девочка старшего возраста и мальчик младшего.

Первую можно исключить, так как один из детей совершенно точно мальчик, но в таком случае остаются три возможных варианта, а не два и вероятность того, что второе чадо тоже мальчик — один шанс из трёх.

4. Парадокс Журдена с карточкой

Проблему, предложенную британским логиком и математиком Филиппом Журденом в начале XX-го века, можно считать одной из разновидностей знаменитого парадокса лжеца.

Филипп Журден

Представьте себе — вы держите в руках открытку, на которой написано: «Утверждение на обратной стороне открытки истинно». Перевернув открытку, вы обнаруживаете фразу «Утверждение на другой стороне ложно».

Как вы понимаете, противоречие налицо: если первое утверждение правдиво, то второе тоже соответствует действительности, но в таком случае первое должно оказаться ложным.

Если же первая сторона открытки лжива, то фразу на второй также нельзя считать истинной, а это значит, первое утверждение опять-таки становится правдой… Ещё более интересный вариант парадокса лжеца — в следующем пункте.

5. Софизм «Крокодил»

На берегу реки стоят мать с ребёнком, вдруг к ним подплывает крокодил и затаскивает ребёнка в воду. Безутешная мать просит вернуть её чадо, на что крокодил отвечает, что согласен отдать его целым и невредимым, если женщина правильно ответит на его вопрос: «Вернёт ли он её ребёнка?».

Понятно, что у женщины два варианта ответа — да или нет. Если она утверждает, что крокодил отдаст ей ребёнка, то всё зависит от животного — посчитав ответ правдой, похититель отпустит ребёнка, если же он скажет, что мать ошиблась, то ребёнка ей не видать, согласно всем правилам договора.

© Коракс Сиракузский

Отрицательный ответ женщины всё значительно усложняет — если он оказывается верным, похититель должен выполнить условия сделки и отпустить дитя, но таким образом ответ матери не будет соответствовать действительности. Чтобы обеспечить лживость такого ответа, крокодилу нужно вернуть ребёнка матери, но это противоречит договору, ведь её ошибка должна оставить чадо у крокодила.

Стоит отметить, что сделка, предложенная крокодилом, содержит логическое противоречие, поэтому его обещание невыполнимо. Автором этого классического софизма считается оратор, мыслитель и политический деятель Коракс Сиракузский, живший в V-м веке до нашей эры.

6. Апория «Дихотомия»

© www.student31.ru

Ещё один парадокс от Зенона Элейского, демонстрирующий некорректность идеализированной математической модели движения. Проблему можно поставить так — скажем, вы задались целью пройти какую-нибудь улицу вашего города от начала и до конца.

Для этого вам необходимо преодолеть первую её половину, затем половину оставшейся половины, далее половину следующего отрезка и так далее.

Иначе говоря — вы проходите половину всего расстояния, затем четверть, одну восьмую, одну шестнадцатую — количество уменьшающихся отрезков пути стремится к бесконечности, так как любую оставшуюся часть можно разделить надвое, значит пройти весь путь целиком невозможно.

Формулируя несколько надуманный на первый взгляд парадокс, Зенон хотел показать, что математические законы противоречат реальности, ведь на самом деле вы можете без труда пройти всё расстояние без остатка.

7. Апория «Летящая стрела»

Знаменитый парадокс Зенона Элейского затрагивает глубочайшие противоречия в представлениях учёных о природе движения и времени.

Апория сформулирована так: стрела, выпущенная из лука, остаётся неподвижной, так как в любой момент времени она покоится, не совершая перемещения.

Если в каждый момент времени стрела покоится, значит она всегда находится в состоянии покоя и не движется вообще, так как нет момента времени, в который стрела перемещается в пространстве.

© www.academic.ru

Выдающиеся умы человечества веками пытаются разрешить парадокс летящей стрелы, однако с логической точки зрения он составлен абсолютно верно. Для его опровержения требуется объяснить, каким образом конечный временной отрезок может состоять из бесконечного числа моментов времени — доказать это не удалось даже Аристотелю, убедительно критиковавшему апорию Зенона.

Аристотель справедливо указывал, что отрезок времени нельзя считать суммой неких неделимых изолированных моментов, однако многие учёные считают, что его подход не отличается глубиной и не опровергает наличие парадокса.

Стоит отметить, что постановкой проблемы летящей стрелы Зенон стремился не опровергнуть возможность движения, как таковую, а выявить противоречия в идеалистических математических концепциях.

8. Парадокс Галилея

Галилео Галилей / © Wikimedia

В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилео Галилей предложил парадокс, демонстрирующий любопытные свойства бесконечных множеств. Учёный сформулировал два противоречащих друг другу суждения. Первое: есть числа, представляющие собой квадраты других целых чисел, например 1, 9, 16, 25, 36 и так далее.

Существуют и другие числа, у которых нет этого свойства — 2, 3, 5, 6, 7, 8, 10 и тому подобные. Таким образом, общее количество точных квадратов и обычных чисел должно быть больше, чем количество только точных квадратов.

Второе суждение: для каждого натурального числа найдётся его точный квадрат, а для каждого квадрата существует целый квадратный корень, то есть, количество квадратов равно количеству натуральных чисел.

На основании этого противоречия Галилей сделал вывод, что рассуждения о количестве элементов применены только к конечным множествам, хотя позже математики ввели понятие, мощности множества — с его помощью была доказана верность второго суждения Галилея и для бесконечных множеств.

9. Парадокс мешка картофеля

© nieidealne-danie.blogspot.com

Допустим, у некоего фермера имеется мешок картофеля весом ровно 100 кг. Изучив его содержимое, фермер обнаруживает, что мешок хранился в сырости — 99% его массы составляет вода и 1% остальные вещества, содержащиеся в картофеле.

Он решает немного высушить картофель, чтобы содержание воды в нём снизилось до 98% и переносит мешок в сухое место.

На следующий день оказывается, что, один литр (1 кг) воды действительно испарился, но вес мешка уменьшился со 100 до 50 кг, как такое может быть? Давайте посчитаем — 99% от 100 кг это 99 кг, значит соотношение массы сухого остатка и массы воды изначально было равно 1/99.

После сушки вода насчитывает 98% от общей массы мешка, значит соотношение массы сухого остатка к массе воды теперь составляет 1/49. Так как масса остатка не изменилась, оставшаяся вода весит 49 кг.

Конечно, внимательный читатель сразу обнаружит грубейшую математическую ошибку в расчётах — мнимый шуточный «парадокс мешка картофеля» можно считать отличным примером того, как с помощью на первый взгляд «логичных» и «научно подкреплённых» рассуждений можно буквально на пустом месте выстроить теорию, противоречащую здравому смыслу.

10. Парадокс воронов

Карл Густав Гемпель / © Wikimedia

Проблема также известна, как парадокс Гемпеля — второе название она получила в честь немецкого математика Карла Густава Гемпеля, автора её классического варианта. Проблема формулируется довольно просто: каждый ворон имеет чёрный цвет.

Из этого следует, что всё, что не чёрного цвета, не может быть вороном. Этот закон называется логическая контрапозиция, то есть если некая посылка «А» имеет следствие «Б», то отрицание «Б» равнозначно отрицанию «А».

Если человек видит чёрного ворона, это укрепляет его уверенность, что все вороны имеют чёрный окрас, что вполне логично, однако в соответствии с контрапозицией и принципом индукции, закономерно утверждать, что наблюдение предметов не чёрного цвета (скажем, красных яблок) также доказывает, что все вороны окрашены в чёрный цвет. Иными словами — то, что человек живёт в Санкт-Петербурге доказывает, что он живёт не в Москве.

С точки зрения логики парадокс выглядит безукоризненно, однако он противоречит реальной жизни — красные яблоки никоим образом не могут подтверждать тот факт, что все вороны чёрного цвета.

источник

Вот у нас уже с вами была подборка парадоксов – … и гений парадоксов друг !, а так же в частности Парадокс :муравей на резиновом тросе , Парадокс Монти Холла и Парадокс колеса Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия – http://infoglaz.ru/?p=53977

В мире математических парадоксов

Математические парадоксы возраста

Доброго времени суток, уважаемое хабрасообщество.

Сегодня я хотел бы затронуть такую увлекательную тему, как математические парадоксы. По данной теме на хабре уже было опубликовано несколько замечательных статей (1,2,3,4,5), но в математике интересные парадоксы этой выборкой далеко не исчерпываются.

Поэтому попробуем рассмотреть другие занимательные парадоксы (а некоторые и «не совсем» парадоксы), которые пока еще не получили здесь должного освещения.

Парадокс кучи и парадокс «Лысого»

Данные парадоксы известны еще с древности. Для начала сформулируем и рассмотрим парадокс кучи, связанного с неопределенностью понятия «куча»:
«если к одному зерну добавлять по зёрнышку, то в какой момент образуется куча?» или обратная формулировка:

«удаляя из кучи в 1 млн зёрен по одному зёрнышку, с какого момента она перестаёт быть кучей?»

Формулировка парадокса основана на очевидной предпосылке, согласно которой одно зёрнышко не образует кучи, и индуктивной предпосылке, по которой добавление одного зернышка к совокупности, кучей не являющейся, несущественно для образования кучи. Из этих предпосылок следует, что никакая совокупность из сколь угодно большого количества зёрен не будет образовывать кучи, что противоречит представлению о существовании кучи из зёрен. Очевидно, что эти рассуждения приводят к неправильным выводам. Однако до самого недавнего времени не было ясно, какие тогда рассуждения здесь использовать. Лишь с появлением теории нечетких множеств Лофти Заде и нечеткой логики стало ясно, что здесь уместны нечеткие расуждения, поскольку имеется в наличии классический объект нечеткой логики — неопределенное понятие «быть кучей». Данные объекты в нечеткой логике интерпретируются как имеющие неточное значение, характеризуемое некоторым нечётким множеством. Согласно таким рассуждениям заключение на каждом шаге остается прежним, но принадлежность его правильности уменьшается с каждым шагом. Когда эта принадлежность падает меньше 50%, то более правильным становится противоположное заключение. Аналогичные рассуждения можно применить и к парадоксу «Лысого»:

«Если волосы с головы выпадают по одному, с какого момента человек становится лысым?»

Парадокс лжеца

Если утверждение на картинке истинно, значит, исходя из его содержания, верно то, что оно — ложно; но если оно — ложно, тогда то, что оно утверждает, неверно; значит, неверно, что утверждение на картинке — ложно, и, значит, это утверждение истинно.

Парадокс лжеца демонстрирует расхождение разговорной речи с формальной логикой, вводя высказывание, которое одновременно и истинно и ложно. В рамках формальной логики данное утверждение не доказуемо и неопровержимо, поэтому решения данного парадокса не существует, но существуют различные варианты его устранения.

Для этого можно применить рассуждения используемые в предыдущем разделе, для этого положим, что утверждение истинно на 0,5, тогда оно и ложно на 0,5, то есть не всякую фразу можно назвать целиком ложной или целиком истинной — «в чем-то высказывание на картинке лжет, а в чем-то — говорит правду» К такому же выводу можно придти с помощью тройственной логики. В ней есть три степени истинности: «истина», «ложь» и «неопределенно». Под «неопределенно» понимается промежуточное по смыслу значение между истиной и ложью. К данной степени истинности и относят парадокс лжеца. Как уже говорилось это не решения парадокса лжеца, а всего лишь объяснения, почему данный парадокс возникает в классической двузначной логике высказываний. Они свидетельствует, что строгое деление всех высказываний на истинные и ложные в данном случае неприменимо, поскольку ведет к парадоксу. В настоящее всемя многие придерживаются такой точки зрения, что данное высказывание вообще не является логическим утверждением, и применять к нему классические методы формальной логики бессмысленно.

Парадокс Тесея

Данный парадокс можно сформулировать следующим образом:
«Если все составные части исходного объекта были заменены, остаётся ли объект тем же объектом?» Было предложено несколько решений этого парадокса.

Согласно философской школе Аристотеля существует несколько описывающих объект причин: форма, материал и суть вещи (которая, по учению Аристотеля, является самой важной характеристикой). Исходя из этого корабль остался тем же, так как его суть не поменялась, лишь изменился износившийся материал.

В следующем решении предложили дать аргументу «тот же» количественную и качественную характеристику. В таком случае, после смены досок корабль Тесея окажется количественно тем же, а качественно — уже другим кораблём.

В последнее время для решения парадокса Тесея предложили использовать 4-х мерную интерпретацию, в которой 3-х мерный корабль имеет также протяженность в 4 измерении-времени. Получившийся 4-х мерный корабль на протяжении временного ряда количественно идентичен с собой. Но отдельные «временные срезы» качественно могут отличаться друг от друга.

Парадокс Абилина

Данный парадокс заключается в том, что группа людей может принять решение, противоречащее возможному выбору любого из членов группы из-за того, что каждый индивидуум считает, что его цели противоречат целям группы, а потому не возражает.

Парадокс был описан Джерри Харви в статье The Abilene Paradox and other Meditations on Management. Имя парадоксу дано по мотивам следующего анекдота, описанного в этой статье: В один жаркий техасский вечер некая семья играла в домино на крыльце до тех пор, пока тесть не предложил съездить в Абилин отобедать.

Жена сказала: «Звучит неплохо». Муж, несмотря на то, что поездка обещала быть долгой и жаркой, подумал, что надо бы подстроиться под других, и произнёс: «По-моему, неплохо; надеюсь, что и твоя мама не откажется». Тёща же ответила: «Конечно, поехали! Я не была в Абилине уже давно». Дорога была жаркой, пыльной и долгой.

Когда же они наконец приехали в кафетерий, еда оказалась невкусной. Спустя четыре часа они, измученные, вернулись домой. Один из них произнёс неискренне: «Верно, неплохая была поездка?». Тёща на это сказала, что, на самом деле, она бы лучше осталась бы дома, но поехала, раз уж остальные трое были полны энтузиазма.

Муж сказал: «Я был бы рад никуда не ездить, поехал лишь чтобы доставить остальным удовольствие». Жена произнесла: «А я поехала, рассчитывая на радость остальных. Надо было быть сумасшедшим, чтобы добровольно отправиться в эту поездку». Тесть ответил, что он предложил это лишь потому, что ему показалось, что остальным скучно.

И они сидели, ошеломлённые тем, что поехали в поездку, которой никто из них не хотел. Каждый из них предпочёл бы спокойно наслаждаться тем днём.

Данный парадокс легко объясняется различными социологическими науками, подтверждающими, что человек редко совершает поступки, противоречащие поступкам его группы. Думаю многие не раз сталкивались с данном парадоксом и в своей жизни.

Парадокс Симпсона и феномен Уилла Роджерса

Замечу, что данные парадоксы являются «кажущимися», то есть они могут возникнуть на интуитивном уровне, но если провести вычисления, то легко убедиться, что никакого парадокса не возникает.

Для иллюстрации парадокса Симпсона рассмотрим пример, описанный известным популяризатором математики Мартином Гарднером.

Пусть мы имеем четыре набора камней. Вероятность вытащить чёрный камень набора № 1 выше, чем из набора № 2. В свою очередь, вероятность вытащить чёрный камень из набора № 3 больше, чем из набора № 4. Объединим набор № 1 с набором № 3 (получим набор I), а набор № 2 — с набором № 4 (набор II). Интуитивно можно ожидать, что вероятность вытащить чёрный камень из набора I будет выше, чем из набора II. Однако, в общем случае такое утверждение неверно. Пример, в котором выполняется парадокс Симпсона:

Черные шары Белые шары Вероятность вытащить черный камень Набор №1

Набор №2

Набор №3

Набор №4

676/13 ≈ 0,4615
454/9 ≈ 0,4444
636/9 ≈ 0,6667
959/14 ≈ 0,6429

Теперь смешаем наборы №1 и №3 — из которых черные камни можно вытащить с большей вероятностью и наборы №2 и №4 — из которых черные камни можно вытащить с меньшей вероятностью.

Черные шары Белые шары Вероятность вытащить черный камень Набор I

Набор II

121012/22 ≈ 0,5454
131013/23 ≈ 0,5652

Как мы видим из таблицы после смешивания вероятность вытащить черный камень из набора II стала выше чем из набора I. Математически никакого парадокса тут нет, так как общая вероятность набора зависит от соотношения количества камней черного цвета и обоих цветов, в данном случае в 4 наборе было 9 черных камней, а в первом аж 7 белых, которые больше всего и повлияли на итоговый расклад. Близок к парадоксу Симпсона и феномен Уилла Роджерса. По сути в них описывается одно и то же явление, но в других терминах. Думаю многие не раз сталкивались с фразами подобные такой:

«Когда оки покинули Оклахому и переехали в Калифорнию, то повысили средний интеллект обоих штатов»

Эту фразу приписывают Уиллу Роджерсу, в честь чего феномен и получил свое название. С точки зрения математики никакого парадокса тут тоже нет. Чтобы в этом убедиться достаточно рассмотреть два множества: первое — {1, 2}, а второе — {90,100}, если число 90 из второго множества перенести в первое, то среднее арифметическое элементов как первого множества так и второго повысится.

Исчезновение клетки

Широкий класс задач на перестановку фигур, обладающих признаками софизмов: изначально в их условие введена замаскированная ошибка. В какой-то мере данные задачи ближе к оптическим иллюзиям, чем к математике.

Для примера расмотрим одну подобную задачу: дан прямоугольный треугольник 13×5 клеток, составленный из 4 частей. После перестановки частей при визуальном сохранении изначальных пропорций появляется дополнительная, не занятая ни одной частью, клетка.

Математически парадоксов и таинственного исчезновения площади тут нет. Визуально наблюдаемые треугольники, на самом деле таковымы не являются, гипотенузы в обоих псевдотреугольниках на самом деле являются ломаными линиями (в первом треугольнике она с изломом внутрь, а во втором — наружу).

Если наложить треугольник друг на друга, то между их «гипотенузами» образуется параллелограмм, в котором и содержится «пропавшая» площадь.

Вместо заключения

К моему большому сожалению невозможно рассмотреть все интересные математические парадоксы (и «не совсем» парадоксы) в рамках одной статьи.

Но надеюсь, что данная статья не оставила Вас равнодушными, и буду очень рад если Вы решите, что не зря потратили время за чтением.

  • математика
  • парадоксы
  • иллюзии

Хабы:

  • Занимательные задачки
  • Математика

7 самых противоречивых парадоксов в математике

Математические парадоксы возраста

Такое утверждение может показаться противоречащим здравому смыслу, так как вероятность одному родиться в определённый день года довольно мала, а вероятность того, что двое родились в конкретный день — ещё меньше, но является верным в соответствии с теорией вероятностей. Таким образом, оно не является парадоксом в строгом научном смысле — логического противоречия в нём нет, а парадокс заключается лишь в различиях между интуитивным восприятием ситуации человеком и результатами математического расчёта.

Один из способов понять на интуитивном уровне, почему в группе из 23 человек вероятность совпадения дней рождения у двух человек столь высока, состоит в осознании следующего факта: поскольку рассматривается вероятность совпадения дней рождения у любых двух человек в группе, то эта вероятность определяется количеством пар людей, которые можно составить из 23 человек. Так как порядок людей в парах не имеет значения, то общее число таких пар равно числу сочетаний из 23 по 2, то есть 23 × 22/2 = 253 пары. Посмотрев на это число, легко понять, что при рассмотрении 253 пар людей вероятность совпадения дней рождения хотя бы у одной пары будет достаточно высокой.

Ключевым моментом здесь является то, что утверждение парадокса дней рождения говорит именно о совпадении дней рождения у каких-либо двух членов группы.

Одно из распространённых заблуждений состоит в том, что этот случай путают с другим — похожим, на первый взгляд, — случаем, когда из группы выбирается один человек и оценивается вероятность того, что у кого-либо из других членов группы день рождения совпадёт с днем рождения выбранного человека. В последнем случае вероятность совпадения значительно ниже.

Парадокс №4. Задача трех узников

Трое заключённых, A, B и С заключены в одиночные камеры и приговорены к смертной казни. Губернатор случайным образом выбирает одного из них и милует его. Стражник, охраняющий заключённых, знает, кто помилован, но не имеет права сказать этого.

Заключённый A просит стражника сказать ему имя того (другого) заключённого, кто точно будет казнён: «Если B помилован, скажи мне, что казнён будет C. Если помилован C, скажи мне, что казнён будет B.

Если они оба будут казнены, а помилован я, подбрось монету, и скажи имя B или C».

Стражник говорит заключённому A, что заключённый B будет казнён.

static3.businessinsider.com

Заключённый A рад это слышать, поскольку он считает, что теперь вероятность его выживания стала 1/2, а не 1/3, как была до этого. Заключённый A тайно говорит заключённому С, что B будет казнен. Заключённый С также рад это слышать, поскольку он всё ещё полагает, что вероятность выживания заключённого А — 1/3, а его вероятность выживания возросла до 2/3. Как такое может быть?

Неправильный ответ заключается в том, что заключённый A не получил информацию о своей собственной судьбе. Заключённый A до того, как спросить стражника, оценивает свои шансы как 1/3, так же как B и C.

Когда стражник говорит, что B будет казнён, это всё равно, что вероятность того, что С помилован (вероятность 1/3) или A помилован (вероятность 1/3), и монета, выбиравшая между B и C, выбрала B. (Вероятность — 1/2; в целом вероятность того, что назван B — 1/6, поскольку A помилован).

Поэтому, узнав, что B будет казнён, заключённый A оценивает шансы на помилование таким образом: его шансы теперь — 1/3, но теперь, зная, что B точно будет казнён, шансы С на помилование теперь 2/3.

Правильный ответ заключается в том, что после получения информации от стражника об казни В, шансы на помилования В равны нулю. Потому что только в двух случаях охранник мог произнести имя В – в случае помилования С и в случае, если подброшенная монетка выпала на В.

Но какой из двух случаев определил указание охранником осуждённого В как такого, что будет казнён не известно. За условиями задачи, охранник не мог назвать имя заключённого А как такого, что будет казнён. Поэтому заключённый А ничего не узнал о собственной судьбе. Первоначальные условия его неизвестности не изменились.

Изменились лишь условия для заключённых С и В. Первый еще имеет шанс на помилование, а второй уже точно будет казнён.

Парадокс №5. Закон Бенфорда

Закон Бенфорда или закон первой цифры гласит, что в таблицах чисел, основанных на данных источников из реальной жизни, цифра 1 на первом месте встречается гораздо чаще, чем все остальные. Более того, чем больше цифра, тем меньше вероятности, что она будет стоять в числе на первом месте.

infoglaz.ru

Если же вы посмотрите на реальные цифры, то заметите, что «9″ встречается гораздо реже, чем в 11% случаев. Также куда меньше цифр, чем ожидалось, начинается с «8″, зато колоссальные 30% чисел начинаются с цифры «1″. Эта парадоксальная картина проявляется во всевозможных реальных случаях, от количества населения до цен на акции и длины рек.

Закон Бенфорда был открыт вовсе не Бенфордом, а американским астрономом Шимоном Ньюкомбом. Примерно в 1881 г. Ньюкомб заметил, что страницы тетради с логарифмическими таблицами, на которых числа начинались с 1, гораздо сильнее захватаны и истрепаны, чем страницы, на которых числа начинались с 2 и так далее до 9 – те выглядели чистыми, как будто их вообще не открывали.

Ньюкомб предположил: те страницы, которые больше всего истрепались, чаще всего и открывали, и на основании своих наблюдений заключил: те ученые, которые до него брали тетрадь, работали с данными, отражавшими подобное распределение цифр. Закон же был назван по фамилии Франка Бенфорда, который в 1938 г.

заметил то же самое, что и Ньюкомб, когда просматривал логарифмические таблицы в научно-исследовательской лаборатории «Дженерал Электрик» в г. Скенектади, штат Нью-Йорк. Он обнаружил, что частота появления цифры в качестве первой падает по мере того, как цифра увеличивается от одного до девяти.

То есть «1″ появляется в качестве первой цифры примерно в 30,1% случаев, «2″ появляется около 17,6% случаев, «3″?—?примерно в 12,5%, и так далее до «9″, выступающей в качестве первой цифры всего лишь в 4,6% случаев.

Чтобы понять это, представьте себе, что вы последовательно нумеруете лотерейные билеты. Когда вы пронумеровали билеты от одного до девяти, шанс любой цифры стать первой составляет 11,1%. Когда вы добавляете билет № 10, шанс случайного числа начаться с «1″ возрастает до 18,2%.

Вы добавляете билеты с № 11 по № 19, и шанс того, что номер билета начнётся с «1″, продолжает расти, достигая максимума в 58%. Теперь вы добавляете билет № 20 и продолжаете нумеровать билеты.

Шанс того, что число начнётся с «2″, растёт, а вероятность того, что оно начнётся с «1″, медленно падает.

Парадокс №6. Почему ваши друзья, скорее всего, популярнее вас?

Парадокс дружбы был впервые вскрыт в 1991 году Скоттом Фелдом, работавшим социологом в State University of New York в Стоун Бруке. В то время, разумеется, доктор Фелд основывался на «настоящих» социальных связях, нежели на онлайн-сетях.

Позднее, в прошлом году, учёные из Cornell University подтвердили действенность выводов и для активных пользователей (721 млн людей на момент исследования, связанных 69 млрд узами виртуальной дружбы).

В действительности же результат справедлив для любой сети, где несколько её членов более популярны, нежели иные. Проистекает же это из простой арифметики.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.